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Abstract

This paper is adapted from a book and many scholarly articles. It reviews the main ideas
of a novel theory for the assessment of a student’s knowledge in a topic and gives details
on a practical implementation in the form of a software system available on the Internet.
The basic concept of the theory is the ‘knowledge state,’ which is the complete set of
problems that an individual is capable of solving in a particular topic, such as Arithmetic
or Elementary Algebra. The task of the assessor—which is always a computer—consists
in uncovering the particular state of the student being assessed, among all the feasible
states. Even though the number of knowledge states for a topic may exceed several
hundred thousand, these large numbers are well within the capacity of current home or
school computers. The result of an assessment consists in two short lists of problems
which may be labelled: ‘What the student can do’ and ‘What the student
is ready to learn.’ In the most important applications of the theory, these two
lists specify the exact knowledge state of the individual being assessed. This work is
presented against the contrasting background of common methods of assessing human
competence through standardized tests providing numerical scores. The philosophy
of these methods, and their scientific origin in nineteenth century physics, are briefly
examined.

The assessment of human competence, as it is still performed today by many specialists in
the schools and in the workplace, is almost systematically based on the numerical evaluation
of some ‘aptitude.’ Its philosophy owes much to nineteenth century physics, whose methods
were regarded as exemplary. The success of classical physics was certainly grounded in its
use of a number of fundamental numerical scales, such as mass, time, or length, to describe
basic aspects of objects or phenomena. In time, ‘measurement’ came to represent the sine
qua non for precision and the essence of the scientific method, and physics the model for
other sciences to imitate. In other words, for an academic endeavor to be called a ‘science,’
it had to resemble physics in critical ways. In particular, its basic observations had to be
quantified in terms of measurement scales in the exact sense of classical physics.
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Prominent advocates of this view were Francis Galton, Karl Pearson and William Thom-
son Kelvin. Because that position is still influential today, with a detrimental effect on fields
such as ‘psychological measurement,’ which is relevant to our subject, it is worth quoting
some opinions in detail. In Pearson’s biography of Galton (Pearson [1924, Vol. II, p. 345]),
we find the following definition:

“Anthropometry, or the art of measuring the physical and mental faculties of
human beings, enables a shorthand description of any individual by measuring

a small sample of his dimensions and qualities. This will sufficiently define his
bodily proportions, his massiveness, strength, agility, keenness of senses, energy,

health, intellectual capacity and mental character, and will constitute concise
and exact numerical1 values for verbose and disputable estimates2.”

For scientists of that era, it was hard to imagine a non-numerical approach to precise
study of an empirical phenomenon. Karl Pearson himself, for instance—commenting on a
piece critical of Galton’s methods by the editor of the Spectator3—, wrote

“There might be difficulty in ranking Gladstone and Disraeli for ‘candour,’ but
few would question John Morley’s position relative to both of them in this

quality. It would require an intellect their equal to rank truly in scholarship
Henry Bradshaw, Robertson Smith and Lord Acton, but most judges would

place all three above Sir John Seeley, as they would place Seeley above Oscar
Browning. After all, there are such things as brackets, which only makes the

statistical theory of ranking slightly less simple in the handling.” (Pearson [1924,
Vol. II, p. 345].)

In other words, measuring a psychical attribute such as ‘candor’ only requires fudging
a little around the edges of the order relation of the real numbers4. The point here is that
real numbers are still used to represent ‘quantity of attribute.’

As for Kelvin, his position on the subject is well known, and often represented in the
form: “If you cannot measure it, then it is not science.” The full quotation is:

“When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot

express it in numbers, your knowledge is of a meager and unsatisfactory kind:
it may be the beginning of knowledge, but you are scarcely, in your thoughts,

advanced to the stage of science, whatever the matter may be.” (Kelvin [1889].)
1Our emphasis.
2This excerpt is from an address “Anthropometry at Schools” given in 1905 by Galton at the London

Congress of the Royal Institute for Preventive Medicine. The text was published in the Journal for Preventive
Medicine, Vol. XIV, p. 93-98, London, 1906.

3The Spectator, May 23, 1874. The editor was taking Galton to task for his method of ranking applied
to psychical character. He used ‘candour’ and ‘power of repartee’ as examples.

4Making such a relation a ‘weak order’ or perhaps a ‘semiorder’ (in the current terminology of combina-
torics). A binary relation - on a finite or countable set S is a weak order if there is a real valued function
f defined on S such that x - y ⇔ f(x) ≤ f(y) for all objects x and y in the set S. The relation - is a
semiorder if the representation has the form: x - y ⇔ f(x) +1 ≤ f(y). For these concepts, see e.g. Roberts
[1979] or Trotter [1992].
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Such a position, which equates precision with the use of numbers, was not on the whole
beneficial to the development of mature sciences outside of physics. It certainly had a costly
impact on the assessment of mental traits. For instance, for the sake of scientific precision,
the assessment of mathematical knowledge was superseded in the U.S. by the measurement
of mathematical aptitude using instruments directly inspired from Galton via Alfred Binet
in France. They are still used today in such forms as the S.A.T.5, the G.R.E. (Graduate
Record Examination), and other similar tests. The ubiquitous I.Q. test is of course part
of the list. In the minds of those nineteenth century scientists and their followers, the
numerical measurement of mental traits was to be a prelude to the establishment of sound,
predictive scientific theories in the spirit of those used so successfully in classical physics.
The planned constructions, however, never went much beyond the measurement stage6.

The limitations of a purely numerical description of some phenomena can be illustrated
by an analogy with sports. It is true that the success of an athlete in a particular sport is
often described by a set of impressive numbers. So, imagine that some committee of experts
has carefully designed an ‘Athletic Quotient’ or ‘A.Q.’ test, intended to measure athletic
prowess. Suppose that three exceptional athletes have taken the test, say Michael Jordan,
Tiger Woods and Pete Sampras. Conceivably, all three of them would get outstanding
A.Q.’s. But these high scores equating them would completely misrepresent how essentially
different from each other they are. One may be tempted to salvage the numerical represen-
tation and argue that the asssessment, in this case, should be multidimensional. However,
adding a few numerical dimensions capable of differentiating Jordan, Woods and Sampras
would only be the first step in a sequence. Including Greg Louganis or Pele to the evalu-
ated lot would require more dimensions, and there is no satisfactory end in sight. Besides,
assuming that one would settle for a representation in n dimensions, for some small n equal
3, 4 or 5 say, the numerical vectors representing these athletes would be poor, misleading
expressions of the exquisite combination of skills making each of them a champion in his
own specialty. Evidently, the same shortcomings of a numerical description also apply in
mathematics education. Numerical test results may be appropriate to decide who is winning
a race. As an evaluative prelude to college, intended to assess the students’ readiness for
further learning, they are very imprecise indeed. The conclusion should be that a different
descriptive language is needed.

More generally, in many scientific areas, from chemistry to biology and especially the
behavioral sciences, theories must often be built on a very different footing than that of
classical physics. Evidently, the standard physical scales such as length, time, mass or
energy, must be used in measuring aspects of phenomena. But the substrate proper to
these other sciences may very well be, in most cases, of a fundamentally different nature.

Of course, we are enjoying the benefits of hindsight. In all fairness, there were important
mitigating circumstances affecting those who upheld the cause of numerical measurement
as a prerequisite to science. For one thing, the appropriate mathematical tools were not

5Note that the meaning of the acronym S.A.T. has recently been changed by Education Testing Service
from ‘Scholastic Aptitude Test’ to ‘Scholastic Assessment Test,’ suggesting that a different philosophy on
the part of the test makers may be under development.

6Sophisticated theories can certainly be found in some areas of the behavioral sciences, for example, but
they do not usually rely on measurement scales intrinsic to these sciences. One prominent exception in
economics is the money scale.
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yet available to support different conceptions. Combinatorics, for example, was yet to
be born as a mathematical topic. More importantly, the ‘Analytical Engine’ of Charles
Babbage was still a dream, and close to another century had to pass before the appearance of
computing machines capable of handling the symbolic manipulations that would be required
for another approach.

The theory reviewed here represents a sharp departure from other approaches to the as-
sessment of knowledge. Its mathematics is in the spirit of current research in combinatorics.
No attempt is made to obtain a numerical representation. We start from the concept of a
possibly large but essentially discrete set of ‘units of knowledge.’ In the case of Elementary
Algebra, for instance, one such unit might be a particular type of algebra problem. The full
domain for High School Algebra may contain a couple of hundred such problems. Our two
key concepts are the ‘knowledge state,’ a particular set of problems that some individual
is capable of solving correctly, and the ‘knowledge structure,’ which is a distinguished col-
lection of knowledge states. For High School Algebra, we shall see that a useful knowledge
structure may contain several hundred thousand feasible knowledge states. Thus, precision
is achieved by the intricacy of the representing structure.

Knowledge structures: main concepts

The precedence relation. A natural starting point for an assessment theory stems from
the observation that some pieces of knowledge normally precede, in time, other pieces of
knowledge. In our context, some algebra problem may be solvable by a student only if some
other problems have already been mastered by that student. This may be because some
prerequisites are required to master a problem, but may also be due to historical or other
circumstances. For example, in a given environment, some concepts are always taught in
a particular order, even though there may be no logical or pedagogical reason to do so.
Whatever its genesis may be, this precedence relation may be used to design an efficient
assessment mechanism.

A simple example of a precedence relation between problems is illustrated by Fig. 1,
which displays a plausible precedence diagram pertaining to the six types of algebra prob-
lems illustrated in Table 1. Note in passing that we distinguish between a type of problem
and an instance of that type. Thus, a type of problem is an abstract formulation subsum-
ing a possibly large class of instances. For the rest of this article, ‘problem’ is almost always
intended to mean ‘problem type.’ The exceptions will be apparent from the context.

a

bc

d e

f

Fig. 1. Precedence diagram
for the six types of algebra
problems illustrated in Table 2.
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The precedence relation between problems is symbolized by the downward arrows. For
example, Problem (e) is preceded by Problems (b), (c) and (a). In other words, the mastery
of Problem (e) implies that of (b), (c) and (a). In the case of these six problems, the
precedence relation proposed by the diagram of Fig. 1 is a credible one. For example,
if a student responds correctly to an instance of Problem (f), it is highly plausible that
the same student has also mastered the other five problems. Note that this particular
precedence relation is part of a much bigger one, representing a comprehensive coverage of
all of Beginning Algebra, starting with the solution of simple linear equations and ending
with problem types such as (f) in Table 1. An example of such a larger precedence relation is
represented by the diagram of Fig. 2. (The diagram has 88 vertices, for the 88 problems used
for the assessment. The full Beginning Algebra curriculum is slightly larger.) This larger
precedence diagram is itself part of a still larger one, displayed in Fig. 3, and comprising
Arithmetic, Beginning Algebra, Intermediate Algebra, and Pre-Calculus.

Table 1: Six types of problems in Elementary Algebra

Name of problem type Example of instance
(a) Word problem on proportions A car travels on the freeway at an average

(Type 1) speed of 52 miles per hour. How many miles
does it travel in 5 hours and 30 minutes?

(b) Plotting a point in the Using the pencil, mark the point at the
coordinate plane coordinates (1, 3).

(c) Multiplication of monomials Perform the following multiplication:
4x4y4 · 2x · 5y2

and simplify your answer as much as possible.
(d) Greatest common factor of Find the greatest common factor of the

two monomials expressions 14t6y and 4tu5y8.
Simplify your answer as much as possible.

(e) Graphing the line through a Graph the line with slope −7 passing through
given point with a given slope the point (−3,−2).

(f ) Writing the equation of the Write an equation for the line that passes
line through a given point and through the point (−5, 3) and is perpendicular
perpendicular to a given line to the line 8x + 5y = 11.

For concreteness, we consider a particular situation in which the assessment is computer
driven and the problems are presented on a monitor, via the Internet. All the virtual tools
needed for providing the answers to the test—pencil, ruler, graphical displays, calculators of
various kinds when deemed necessary—, are part of the interface. In the course of a tutorial,
the testees have been familiarized with these tools. In Problems (b) and (e), a coordinate
plane is displayed on the computer monitor as part of the question, and the pencil and,
for Problem (e), also the ruler, are provided. In this problem, the student must graph the
line using the virtual pencil and ruler. We also suppose that all the problems have open
responses (i.e. no multiple choice), and that ‘lucky guesses’ are unlikely. (Careless errors are
always possible, of course, and a clever assessment procedure has to guard against them.)

5



a

b

c

d

e

f

a

b

c

d

e

f

Fig. 2. Diagram of the precedence relation for Beginning Algebra. The
vertices marked a-f refer to Problems (a)-(f) of Fig. 1, whose diagram
may be inferred from the one above.
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Problems of Table 1

Arithmetic

Beginning Algebra

Intermediate Algebra

Pre−Calculus

State of Table 2

Fig. 3. Combined precedence
diagram for Arithmetic, Mid-
dle School Algebra, and Pre-
Calculus. Each of the 397
points represents a problem
type.
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We postpone for the moment the discussion of how to construct a valid precedence dia-
gram for a realistically large problem set. (For example, how were the precedence diagrams
of Figs. 2 or 3 obtained?) This question and other critical ones are considered later on in
this article. For the time being, we focus on the miniature example of Table 1 which we use
to introduce and illustrate the basic ideas.

The knowledge states. The precedence diagram of Fig. 1 completely specifies the
feasible knowledge states. The respondent can certainly have mastered just Problem a:
having mastered a does not imply knowing anything else. But if he or she knows e, for
example, then a, b and c must also have been mastered, forming a knowledge state which we
represent as the set of problems {a,b, c, e} or more compactly abce. Analyzing carefully the
precedence diagram of Fig. 1, we see that there are exactly 10 knowledge states consistent
with it, forming the set

K = {∅, a,b, ab, ac, abc, abcd, abce, abcde, abcdef},

where ∅ symbolizes the empty state: the respondent is unable to solve any of the 6 problems.
The set K is our basic concept, and is called the knowledge structure. Note that a useful
knowledge structure is not necessarily representable by a precedence diagram such as those
of Figs. 1, 2 or 3 and may simply be specified by the collection of knowledge states.

The learning paths. This knowledge structure allows several learning paths. Starting
from the naive state ∅, the full mastery of state abcdef can be achieved by mastering first a,
and then successively the other problems in the order b 7→ c 7→ d 7→ e 7→ f . But there are
other possible ways to learn. All in all, there are 6 possible learning paths consistent with
the knowledge structure K, which are displayed in Fig. 4.

a

b d e f
0

a c

e d f

b

c d e f

e d f

b

d e fc

e d fFig. 4. The 6 possible learning
paths consistent with the prece-
dence diagram of Fig. 1.

In realistic knowledge structures such as those for Arithmetic or Elementary Algebra,
the numbers of feasible knowledge states and of learning paths become very large. In the
case of Beginning Algebra, whose precedence diagram was given in Fig. 2, there are around
60, 000 knowledge states and literally billions of feasible learning paths. These numbers may
be puzzling. Where is the diversity coming from? After all, these mathematical subjects
are highly structured and typically taught in roughly the same sequence. However, even
though the school curriculum may be more or less standard, learning the material, and
also forgetting it, follows their own haphazard course. Besides, 60, 000 states form but a
minute fraction of the 288 possible subsets of the set of 88 problems. In any event, it is clear
that, even in a highly structured mathematical topic, an accurate assessment of knowledge
involves sorting out a considerable array of possibilities.
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The outer and inner fringes of a knowlegde state. As suggested by the precedence
diagrams and by the learning paths of Fig. 4, the knowledge structures considered here have
the property that learning can take place step by step, one problem type at a time. More
precisely, each knowledge state (except the top one) has at least one immediate successor
state, that is, a state containing all the same problems, plus exactly one. The knowledge
state abc of K, for instance, has the two states abcd and abce as immediate successors.
Problems d and e form the ‘outer fringe’ of state abc. In general, the outer fringe of some
knowledge state K is the set of all problems p such that adding p to K forms another
knowledge state. The concept of outer fringe is critical because this is where progress is
taking place: learning proceeds by mastering a new problem in the outer fringe, creating a
new state, with its own outer fringe.

Conversely, each knowledge state (except the empty state) has at least one predecessor

state, that is a state containing exactly the same problems, except one. The knowledge
state abc that we just considered has two predecessor states, namely ab and ac. Problems
b and c together form the inner fringe of state abc: removing either b or c from state
abc creates other states in the structure, that is ab and ac. If for some reason a student
experiences difficulties in mastering the problems in the outer fringe, reviewing previous
material should normally take place in the inner fringe of a student’s state. Figure 5
illustrates these concepts of fringes and others introduced so far. A state K is pictured with
three problems in its outer fringe. Another state K ′ has two problems in its inner fringe.

Inner fringe of state K'

State K'

Problem types
Outer fringe of state K

State K

Fig. 5. The outer fringe of a state K and
the inner fringe of another state K ′.

Thus, we can use the two fringes as the main building blocks of the ‘navigation tool’ of
the system, with the outer fringes directing the progress, and the inner fringes monitoring
temporary retreats, and making them profitable.

Interestingly, the fringes also play a less obvious, but equally important role in summa-
rizing the results of an assessment. A knowledge state is essentially a list of all the problems
mastered by a student at the time of an assessment. Such a list will often be unwieldy and
contain several dozen problem names, not a very convenient description. It can be shown
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mathematically, however, that for the most useful kinds of knowledge structures, the two
fringes suffice to specify the knowledge state completely. In other words, the result of an
assessment can be given in the form of two short lists, one for the inner fringe (what the

student can do, which is understood here as the most sophisticated problems in the
student’s state), and one for the outer fringe (what the student is ready to learn).
Experience with realistic knowledge structures in school mathematics has shown that these
two lists together will contain on average 11 problems, enabling a very compact and faithful
presentation of the result of an assessment.

Table 2 contains a typical example of the two fringes of a knowledge state, which is that
of an actual student currently using the system in a middle school. Taken together, the
two fringes amount to 9 problems, which together suffice to specify the 80 problems of that
student’s state which is represented in the top region of Fig. 3. The economy is startling.

Table 2: A knowledge state in Arithmetic specified by its two fringes

Inner fringe: What the student

can do

Double negation:

−(−12) − 7 =
Arithmetic with absolute value:∣∣∣ |9 − 12| − |5|

∣∣∣
Word problem with clocks:

A clock runs too fast and gains 6
minutes every 5 days. How many
minutes and seconds will it have
gained at the end of 9 days?

Word problem on percentage (Problem

type 1):

A pair of sneakers usually sells
for $45. Find the sale price after
a 20% discount.

Mixed number multiplication:

33
4 × 24

9 =
(Write your answer as a mixed
number in lowest terms.)

Outer fringe: What the student
is ready to learn

Decimal division:

5.2 )7.54
Word problem on percentage (Problem
type 2):

A sofa is on sale for $630 after
a 28% discount. What was the price
before discount?

Word problem with inverse proportion:

If 4 machines are needed to complete
a task in 21 days, how long will it
take 7 machines to complete the same
task?

Average of two numbers:

What is the average value of 114
and 69?

The information provided by such a table is a more meaningful result of an assessment than
a couple of numerical scores from a standardized test. It is also considerably more precise.
An assessment involving all of high school mathematics, based on the knowledge states
consistent with the precedence diagram of Fig. 3, would classify the students in hundreds
of thousands of categories, each with its own unique table of inner and outer fringes. By
contrast, a quantitative S.A.T. classifies the test taker into one of roughly 40 categories
(from 400 to 800, in steps of 10).
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Building a knowledge structure

We now turn to what is certainly the most demanding task in a realistic application of these
ideas. It certainly makes sense to enroll experts, such as seasoned teachers or textbook
writers, to find the knowledge states. This must be done at least for the first draft of a
knowledge structure, which can then be refined by a painstaking analysis of student data.
However, we cannot simply sit an expert in front of a computer terminal with the instruction:
“provide a complete list of all the knowledge states in a given topic.” Fortunately, an indirect
approach is possible. An expert can reliably respond to questions such as these:

Q1. Suppose that a student is not capable of solving problem p.

Could this student nevertheless solve problem p′?

It can be proven that a knowledge structure represented by a precedence diagram such
as the one of Fig. 2 can be inferred exactly from the responses to a complete collection of
questions of the type Q1. (For a very large precedence diagram, such as the one of Fig. 3,
several diagrams are first constructed by querying experts on each of the fields of knowledge,
like Arithmetic, Beginning Algebra, etc. Those diagrams are then ‘glued’ together, relying
again on experts’ judgment.)

In the case of the precedence diagram of Fig 1, the mastery of problem e, for instance,
implies that of a single minimum set of precedent problems, namely a, b and c. In other
words, all learning paths in Fig. 4 progress through these three problems before reaching e.
There are important cases, however, in which the mastery of a problem may be achieved
via anyone of several distinct minimum sets of precedent problems. Such structures, which
generalize those that can be represented by precedence diagrams, are called knowledge
spaces. They are derived from the responses to the collection of more difficult questions of
the following type:

Q2. Suppose that a student has not mastered problems p1,p2, . . . ,pn.
Could this student nevertheless solve problem p′?

In practice, not all questions of type Q1 or Q2 must be asked because, in many cases,
responses to some questions can be inferred from responses to other questions. For typical
knowledge structures encountered in education, an expert may be required to respond to a
few thousand questions to get a complete description of all the knowledge states.

By interviewing several experts and combining their answers, one can build a knowledge
structure which reflects their consensual view of the field. This alone does not guarantee
the validity of the knowledge structure, that is, the agreement between the states in the
structure and the actual states in the student population. Actual student data are also
needed. With an Internet based, largely distributed assessment system such as the one
discussed here, data from several thousand users can be collected in the span of a year,
providing a bounty of information. Such data can be used to refine a knowledge structure
obtained from experts’ judgments via the questions of type Q1 or Q2. To begin with,
states occurring rarely or not at all in the empirical applications can be deleted from the
knowledge structure. More importantly, the accuracy of the structure can be evaluated by
the following probe, and corrected if necessary. In most assessments, an extra problem p∗
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is added to the questioning, which is not used in the choice of the final knowledge state
K representing the student. Using K, one can predict the student answer to p∗ which
should be correct if p∗ is in K—except for careless errors—and false otherwise. In the
knowledge structure for Beginning Algebra for example, as it is used by students today, the
correlation between predicted and observed answers hovers between .7 and .8, depending
on the sample of students. These high values actually underestimate the accuracy of the
structure: a student having mastered some problem p∗ contained in his or her knowledge
state may nevertheless make a careless error in solving it. This correlation index is a
powerful statistical tool continuously monitoring the validity of the knowledge structure,
pointing to weaknesses, and evaluating the corrections prompted by some earlier analysis.

Uncovering a knowledge state in a knowledge structure

Suppose that a satisfactory knowledge structure has been obtained. The task of the as-
sessment is to uncover, by efficient questioning, the knowledge state of a particular student
under examination. The situation is similar to that of adaptive testing—i.e. the comput-
erized forms of the S.A.T. and the like—with the critical difference that the outcome of
the assessment here is a knowledge state, rather than a numerical estimate of a student’s
competence in the topic.

The assessment procedures available all pertain to the scheme outlined in Fig. 6.

Subject's
response

Questioning
     Rule

Updating
    Rule

Plausibility
of the states
on trial n

Plausibility
of the states
on trial n+1

Selected 
problem

Fig. 6. Diagram of the transitions in an assessment procedure.

In this article, we focus on one particular assessment procedure in which the plausibility
of a state is its current likelihood, based on all the information accumulated so far. At the
outset of the assessment (trial 1 of the procedure), each of the knowledge states is assigned
a certain a priori likelihood, which may depend upon the school year of the student if it
is known, or some other information. The sum of these a priori likelihoods is equal to 1.
They play no role in the final result of the assessment but may be helpful in shortening it.
If no useful information is available, then all the states are assigned the same likelihood.
The first problem p1 is chosen so as to be ‘maximally informative.’ This is interpreted
to mean that, on the basis of the current likelihoods of the states, the student has about
a 50% chance of knowing how to solve p1. In other words, the sum of the likelihoods
of all the states containing p1 is as close to .5 as possible. If several problem types are
equally informative (as may happen at the beginning of an assessment) one of them is
chosen at random. The student is then asked to solve an instance of that problem, also
picked randomly. The student’s answer is then checked by the system, and the likelihood
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of all the states are modified according to the following updating rule. If the student gave
a correct answer to p1, the likelihoods of all the states containing p1 are increased and,
correspondingly, the likelihoods of all the states not containing p1 are decreased (so that the
overall likelihood, summed over all the states, remains equal to 1). A false response given
by the student has the opposite effect: the likelihoods of all the states not containing p1

are increased, and that of the remaining states decreased. If the student does not know
how to solve a problem, he or she can choose to answer “I don’t know” instead of guessing.
This results in a substantial increase in the likelihood of the states not containing p1,
thereby decreasing the total number of questions required to uncover the student’s state.
Problem p2 is then chosen by a mechanism identical to that used for selecting p1, and the
likelihood values are increased or decreased according to the student’s answer via the same
updating rule. Further problems are dealt with similarly. In the course of the assessment,
the likelihood of some states gradually increases. The assessment procedure stops when
two criteria are fulfilled: (1) the entropy of the likelihood distribution, which measures the
uncertainty of the assessment system regarding the student’s state, reaches a critical low
level, and (2) there is no longer any useful question to be asked (all the problems have either
a very high or a very low probability of being responded to correctly). At that moment,
a few likely states remain and the system selects the most likely one among them. Note
that, because of the stochastic nature of the assessment procedure, the final state may very
well contain a problem to which the student gave a false response. Such a response is thus
regarded as due to a careless error. On the other hand, because all the problems have
open-ended responses (no multiple choice), with a large number of possible solutions, the
probability of lucky guesses is negligible.

To illustrate the evolution of an assessment, we use a graphic representation in the
guise of the likelihood map of a knowledge structure. In principle, each colored point in
the oval shape of Fig. 7 represents one of the 57,147 states of the knowledge structure for
Arithmetic. (Because of graphics limitations, some grouping of similar states into a single
point was necessary. To simplify the exposition, we suppose in the sequel that each point
of the map represents one state.) The precedence diagram of this structure was given in
Fig. 3.

Empty state Full state

Entropy = 8.19

108

Most likely

Most unlikely

Fig. 7. Likelihood map
of the Arithmetic knowl-
edge structure whose
precedence diagram was
given in Fig. 3.

Knowledge states are sorted according to the number of problem types they contain,
from 0 problems on the far left to 108 problems on the far right. The leftmost point
stands for the empty knowledge state, which is that of a student knowing nothing at all in
Arithmetic. The rightmost point represents the full knowledge state and corresponds to a
student having mastered all the problems in Arithmetic. The points located on any vertical
line within the oval represent knowledge states containing exactly the number of problems
indicated on the abscissa. The oval shape is chosen for esthetic reasons and reflects the
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fact that, by and large, there are many more states around the middle of the scale than
around the edges. For instance, there are 1,668 states containing exactly 75 problems, but
less than 100 states, in Arithmetic, containing more than 100 problems or less than 10
problems. The arrangement of the points on any vertical line is largely arbitrary.

The color of a point represents the likelihood of the corresponding state. A color coded
logarithmic scale, pictured on the right of Fig. 7, is used to represent the likelihood values.
Red, orange, and yellow-white indicate states that are more likely than average, with yellow-
white marking the most likely states. Similarly, dark blue, blue, and light blue represent
states that are less likely than average, with dark blue marking the least likely states.

Figure 8 displays a sequence of likelihood maps describing the evolution of an assessment
in Arithmetic from the very beginning, before the first problem, to the end, after the
response to the last problem is recorded by the system and acted upon to compute the last
map. The full assessment took 24 questions which is close to the average for Arithmetic.
The initial map results from preliminary information obtained from that student. The
redish strip of that map represents the a priori relatively high likelihood of the knowledge
states containing between 58 and 75 problems: as a six grader, this student can be assumed
to have mastered about two thirds of the Arithmetic curriculum.

Final state

Final likelihood

Initial likelihood

Q. #24
(correct)

Q. #23

(correct)

(correct)

(failed)
Q. #3

(failed)

Q. #16
(failed)

(failed)
Q. #17

Q. #9
(not known)

(correct)
Q. #10

E = 9.55

E = 3.36

E = 3.06

E = 3.68

E = 4.81

E = 4.94

E = 5.02

E = 6.29

E = 6.82

E = 7.63

E = 9.21

E = 9.37

Entropy = 10.20

Question #1

Q. #2

Most unlikely

Most likely

Fig. 8. Sequence of likelihood maps representing an assessment converging toward
the student’s knowledge state.
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Next to each map in Fig. 8, we indicate the entropy of the corresponding likelihood distri-
bution, and the student’s response to the question (correct, false, or not known). Note that
the initial entropy is 10.20, which is close to the theoretical maximum of 10.96 obtained for
a uniform distribution on a set of 57,147 knowledge states. As more information is gathered
by the system via the student’s responses to the questions, the entropy decreases gradu-
ally. Eventually, after 24 questions have been answered a single very bright point remains
among mostly dark blue points and a few bright points. This very bright point indicates
the most likely knowledge state for that student, based on the answers to the problems.
The assessment stops at that time because the entropy has reached a critical low level and
the next ‘best’ problem to ask has only a 19% chance of being solved by the student, and
so would not be very informative. In this particular case only 24 problems have sufficed to
pinpoint the student’s knowledge state among 57,147 possible ones. This striking efficiency
is achieved by the numerous inferences implemented by the system in the course of the
assessment.

The assessment procedure described in this article is the core engine of an Internet
based, automated mathematics tutor which is used in several hundred colleges and school
districts in the U.S. Numerous data indicate that learning is very efficient, which must be
attributed to the precision of the assessment: teaching is always on target, in the outer fringe
of a student’s state. In the U.S., the extensive research leading to this system has been
supported since 1983 by various grants, mostly from the National Science Foundation. The
first paper on this research topic, which is named ‘Knowledge Spaces,’ was published in 1985
by J.-P. Doignon and J.-Cl. Falmagne, two of the authors of this article. Important results
have also been obtained by researchers from other countries, such as D. Albert (Austria), C.
Dowling (Germany) and M. Koppen (The Netherlands). Most of the results are presented
in a monograph entitled ‘Knowledge Spaces,’ by Doignon and Falmagne [1999].
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