ALEKS[®]

Summer Prep For General Chemistry

By default, the topics listed below are all available. However, instructors can customize the course to align with their teaching goals using *any* topics from the complete ALEKS curriculum.

Curriculum Show All (161 topics + 672 additional topics)

- Math and Algebra (54 topics)
 - ♦ Mathematics (18 topics)
 - ◊ Integer multiplication and division
 - ◊ Simplifying a fraction
 - Equivalent fractions
 - ◊ Signed fraction addition or subtraction: Basic
 - ♦ Signed fraction multiplication: Basic
 - \Diamond Signed fraction division
 - ♦ Exponents and fractions
 - \Diamond Introduction to inequalities
 - **\Diamond** Writing expressions using exponents
 - \diamond Introduction to exponents
 - \Diamond Introduction to order of operations
 - ◊ Ordering numbers with positive exponents
 - \Diamond Evaluating expressions with exponents of zero
 - ◊ Evaluating an expression with a negative exponent: Whole number base
 - **\Diamond** Evaluating an expression with a negative exponent: Positive fraction base
 - ♦ Complex fraction without variables: Problem type 1
 - ◊ Square root of a perfect square
 - ♦ Introduction to square root multiplication
 - ◆ Algebra Expressions (20 topics)
 - ◊ Evaluating a quadratic expression: Integers
 - ◊ Combining like terms: Integer coefficients
 - **Orbining** like terms in a quadratic expression
 - ◊ Distributive property: Integer coefficients
 - ◊ Using distribution and combining like terms to simplify: Univariate
 - ♦ Introduction to the product rule of exponents
 - ◊ Product rule with positive exponents: Univariate
 - ♦ Introduction to the product rule with negative exponents
 - ♦ Introduction to the quotient rule of exponents
 - ◊ Simplifying a ratio of univariate monomials
 - ◊ Quotient rule with negative exponents: Problem type 1
 - ◊ Introduction to the power of a product rule of exponents
 - ◊ Power and quotient rules with positive exponents
 - ◊ Squaring a binomial: Univariate
 - ♦ Multiplying binomials with leading coefficients greater than 1
 - ◊ Multiplying rational expressions involving multivariate monomials
 - **Orally Complex fraction involving univariate monomials**
 - ◊ Square root of a perfect square monomial
 - ◊ Writing a one−step expression for a real–world situation

- ♦ Writing a multi–step equation for a real–world situation
- ◆ Linear Equations (12 topics)
 - ◊ Identifying solutions to a linear equation in one variable: Two-step equations
 - ◊ Identifying solutions to a linear equation in two variables
 - \Diamond Additive property of equality with integers
 - \Diamond Additive property of equality with a negative coefficient
 - \Diamond Multiplicative property of equality with signed fractions
 - \Diamond Solving a multi–step equation given in fractional form
 - Solving a linear equation with several occurrences of the variable: Fractional forms with monomial numerators
 - ◊ Solving a rational equation that simplifies to linear: Denominator x+a
 - \diamond Solving a proportion of the form a/(x+b) = c/x
 - ◊ Solving for a variable in terms of other variables using addition or subtraction with division
 - \Diamond Solving for a variable in terms of other variables in a linear equation with fractions
 - \Diamond Solving a word problem with two unknowns using a linear equation
- Quadratic and Radical Equations (4 topics)
 - ◊ Solving a quadratic equation using the square root property: Decimal answers, basic
 - ◊ Solving a quadratic equation using the square root property: Decimal answers, advanced
 - ◊ Applying the quadratic formula: Decimal answers
 - ♦ Introduction to solving a radical equation

• Graphing (15 topics)

- ♦ Graphing Equations (7 topics)
 - Classifying slopes given graphs of lines
 - **◊** Graphing a line given its equation in slope–intercept form: Fractional slope
 - ◊ Writing the equation of a line given the y−intercept and another point
 - **◊** Graphing a line through a given point with a given slope
 - ◊ Finding slope given the graph of a line on a grid
 - ♦ Finding slope given two points on a line
 - ♦ Finding x- and y-intercepts given the graph of a line on a grid
- ♦ Graphing Data (8 topics)
 - ♦ Constructing a scatter plot
 - ♦ Sketching the line of best fit
 - ♦ Scatter plots and correlation
 - Approximating the equation of a line of best fit and making predictions
 - ◊ Choosing a graph to fit a narrative: Basic
 - **Orbiging a graph to fit a narrative: Advanced**
 - **\Diamond** Constructing a histogram for numerical data
 - ♦ Mean of a data set
- Advanced Math (4 topics)
 - ♦ Logarithms and Exponentials (4 topics)
 - ♦ Evaluating a logarithmic expression
 - \diamond Solving an equation of the form $\log_{b} a = c$
 - ◊ Evaluating an exponential function with base e that models a real–world situation
 - ◊ Solving an exponential equation by using logarithms: Decimal answers, basic
- Physics (9 topics)
 - Force and Energy (2 topics)
 - ♦ Calculating gravitational potential energy
 - ◊ Using conservation of energy with gravitational potential energy
 - Electrostatics (7 topics)
 - ◊ Understanding that opposite charges attract and like charges repel
 - ◊ Understanding net electrical charge
 - **◊** Understanding how electrostatic force scales with charge and separation
 - ◊ Understanding how electrostatic forces cancel

◊ Understanding that electrostatic forces add as vectors

- ◊ Understanding how electrostatic energy scales with charge and separation
- \Diamond Sketching polarization induced by a nearby charge
- Measurement (31 topics)
 - ◆ Scientific Notation (4 topics)
 - \Diamond Multiplication of a decimal by a power of ten
 - \Diamond Division of a decimal by a power of ten
 - **\Diamond** Converting between decimal numbers and numbers written in scientific notation
 - ♦ Multiplying and dividing numbers written in scientific notation
 - ♦ SI Units (7 topics)
 - **\Diamond** Knowing the dimension of common scientific units of measurement
 - ◊ Understanding the purpose of SI prefixes
 - **\diamond** Knowing the value of an SI prefix as a power of 10
 - Interconversion of prefixed and base SI units
 - Interconversion of prefixed SI units
 - ♦ Interconverting compound SI units
 - ♦ Interconverting temperatures in Celsius and Kelvins
 - ♦ Measurement Math (2 topics)
 - Simplifying unit expressions
 - Output Multiplication and division of measurements
 - ♦ Measurement Uncertainty (8 topics)
 - ♦ Counting significant digits
 - ♦ Rounding to a given significant digit
 - ◊ Counting significant digits when measurements are added or subtracted
 - ♦ Counting significant digits when measurements are multiplied or divided
 - Adding or subtracting and multiplying or dividing measurements
 - \Diamond Reading a measurement from an analog instrument
 - ♦ Distinguishing accuracy and precision
 - ♦ Calculating absolute and relative error
 - Quantitative Problem Solving (10 topics)
 - ◊ Setting up a one−step unit conversion
 - ◊ Setting up a unit reprefix conversion
 - ♦ Setting up a unit conversion
 - ◊ Predicting the units of the solution to a basic quantitative problem
 - **Order** Deducing the unit missing from the solution to a basic quantitative problem
 - ◊ Setting up the solution to a basic quantitative problem
 - ◊ Identifying errors in the solution to a basic quantitative problem
 - ◊ Setting up the math for a one–step quantitative problem
 - \Diamond Setting up the math for a one–step problem with unit conversion
 - ◊ Setting up the math for a two–step quantitative problem

• Matter (20 topics)

- ♦ Mass, Volume and Density (6 topics)
 - **\Diamond** Estimating the volume in liters of a square prism object
 - \Diamond Finding the side length of a cube from its volume in liters
 - **◊** Understanding the relationship between mass, volume, and density
 - ♦ Calculating mass density
 - ◊ Using mass density to find mass or volume
 - ♦ Solving applied density problems
- ♦ Substances (2 topics)
 - Naming common laboratory separation techniques
 - Oistinguishing extensive and intensive properties
- ◆ Atomic Theory (5 topics)
 - ♦ Distinguishing elements and compounds

- Oistinguishing compounds and mixtures
- Classifying substances from a sketch
- Oistinguishing chemical and physical change
- ◊ Distinguishing solid, liquid and gas phases of a pure substance
- Chemical Elements (7 topics)
 - ◊ Names and symbols of important elements
 - ◊ Reading a Periodic Table entry
 - \Diamond Understanding periods and groups of the Periodic Table

Recognizing element families

- \Diamond Organization of the Periodic Table
- \Diamond Standard chemical and physical states of the elements
- ♦ Using the Periodic Table to identify similar elements
- Atoms, Ions and Molecules (14 topics)
 - ◆ Atomic Structure (6 topics)
 - ♦ Identifying the parts of an atom
 - **\Diamond** Counting protons and electrons in atoms and atomic ions
 - ♦ Finding isoelectronic atoms
 - \Diamond Predicting the ions formed by common main–group elements
 - \Diamond Counting valence electrons in a neutral atom
 - \diamond Counting the electron shells in a neutral atom
 - Chemical Compounds (3 topics)
 - \Diamond Counting the number of atoms in a formula unit
 - ◊ Writing a chemical formula given a molecular model
 - \Diamond Writing a chemical formula given a chemical structure
 - ◆ Ionic Compounds (5 topics)
 - ♦ Predicting the formula of binary ionic compounds
 - ◊ Deducing the ions in a binary ionic compound from its empirical formula
 - ◊ Identifying common polyatomic ions
 - **Ore Predicting the formula of ionic compounds with common polyatomic ions**
 - ◊ Deducing the ions in a polyatomic ionic compound from its empirical formula
- Stoichiometry (14 topics)
 - Moles and Molar Mass (2 topics)
 - ◊ Calculating and using the molar mass of elements
 - \Diamond Finding molar mass from chemical formulae
 - Elemental Analysis (2 topics)
 - \Diamond Finding mass percent from chemical formulae
 - ♦ Solving applied mass percent problems
 - Chemical Equations (4 topics)
 - Stoichiometric coefficients
 - **Oral Balancing chemical equations with noninterfering coefficients**
 - **\Diamond** Balancing chemical equations with interfering coefficients
 - ♦ Writing a chemical equation from a molecular movie
 - Reaction Stoichiometry (1 topics)
 - **\Using a chemical equation to find moles of product from moles of reactant**
 - Solution Stoichiometry (5 topics)
 - ◊ Calculating molarity using solute moles
 - ◊ Using molarity to find solute moles and solution volume
 - Calculating molarity using solute mass
 - **◊** Using molarity to find solute mass and solution volume
 - ◊ Dilution
- Other Topics Available(*) (672 additional topics)

- ♦ Math and Algebra (6 topics)
 - ♦ Absolute value of a number
 - Rewriting an algebraic expression without a negative exponent
 - ◊ Additive property of inequality with integers
 - ◊ Solving a two-step linear inequality: Problem type 2
 - ♦ Discriminant of a quadratic equation
 - ◊ Solving a radical equation that simplifies to a linear equation: One radical, basic
- ♦ Graphing (7 topics)
 - \Diamond Finding the slope and y-intercept of a line given its equation in the form Ax + By = C
 - \Diamond Finding x– and y–intercepts of a line given the equation: Advanced
 - **Olassifying linear and nonlinear relationships from scatter plots**
 - Interval Control Co
 - ♦ Finding the mean of a symmetric distribution
 - Oppulation standard deviation
 - \diamond Word problem involving calculations from a normal distribution
- ◆ Advanced Math (21 topics)
 - ♦ Basic properties of logarithms
 - \Diamond Expanding a logarithmic expression: Problem type 1
 - ◊ Expanding a logarithmic expression: Problem type 2
 - \Diamond Writing an expression as a single logarithm
 - **\Diamond** Converting between common logarithmic and exponential equations
 - **\Diamond** Converting between natural logarithmic and exponential equations
 - ◊ Solving a multi–step equation involving natural logarithms
 - \Diamond Solving an exponential equation by using natural logarithms: Decimal answers
 - \diamond Graphing an exponential function and its asymptote: $f(x) = a(e)^{x-b} + c$
 - ◊ Finding an angle measure of a triangle given two angles
 - ◊ Finding an angle measure for a triangle with an extended side
 - ◊ Finding an angle measure for a triangle sharing a side with another triangle

◊ Pythagorean Theorem

- ◊ Sine, cosine, and tangent ratios: Numbers for side lengths
- **Output** Using the Pythagorean Theorem to find a sine, cosine, or tangent ratio in a right triangle
- ◊ Using a trigonometric ratio to find a side length in a right triangle
- **◊** Using a trigonometric ratio to find an angle measure in a right triangle
- ♦ Solving a right triangle
- ◊ Finding the magnitude and direction of a vector given its graph
- ◊ Finding the components of a vector given its graph
- ♦ Finding the component of a vector along another vector
- Physics (4 topics)
 - ◊ Using conservation of energy with electrostatic potential energy
 - **◊** Understanding how electrostatic potential energy scales with charge and separation
 - ◊ Calculating the magnitude of an electrostatic force using Coulomb's Law
 - ♦ Calculating electrostatic energy using Coulomb's Law
- ◆ Measurement (10 topics)
 - ◊ Calculating positive powers of scientific notation
 - ◊ Finding negative powers of scientific notation
 - ◊ Interconverting derived SI units
 - \Diamond Interconverting whole degree temperatures in Celsius and kelvins
 - **◊** Interconverting temperatures in Celsius and Fahrenheit
 - Addition and subtraction of measurements
 - ♦ One step dosage calculations
 - ◊ Dosage calculations using patient weight
 - ♦ Dosage rate calculations
 - ◊ Naming components of the scientific method

♦ Matter (8 topics)

◊ Estimating the volume in liters of a spherical object

- **\Diamond** Estimating the volume in liters of a cylindrical object
- ◊ Calculating volume by combining the volume of simple shapes
- ◊ Distinguishing mixtures from pure substances through physical properties
- ◊ Distinguishing physical and chemical properties by a macroscopic description

◊ Using the Law of Constant Composition

◊ Using the Law of Multiple Proportions

◊ Distinguishing a metal from a nonmetal by physical properties

♦ Atoms, Ions and Molecules (20 topics)

\Diamond Counting the number of protons and electrons in a neutral atom

♦ Finding isoprotonic atoms

◊ Isotopes

◊ Finding atomic mass from isotope mass and natural abundance

 \Diamond Finding isotope mass or natural abundance from atomic mass

◊ Counting valence electrons in an atomic ion

Orawing the Lewis dot diagram of a main group atom or common atomic ion

◊ Understanding the difference between a molecular and empirical formula

◊ Understanding the prefixes used in naming binary compounds

Naming binary covalent compounds

 \Diamond Predicting whether a compound is ionic or molecular

Obstinguishing an ionic from a molecular compound by physical properties

♦ Naming binary ionic compounds

O Deducing the empirical formula of a binary ionic compound from its name

 \Diamond Predicting ionic compounds formed by two elements

Predicting and naming ionic compounds formed by two elements

◊ Naming ionic compounds with common polyatomic ions

♦ Identifying oxoanions

◊ Naming ionic compounds with common oxoanions

♦ Naming hydrates

Stoichiometry (24 topics)

◊ Using the Avogadro Number

[◊] Calculating and using the molar mass of diatomic elements

◊ Calculating and using the molar mass of heterodiatomic compounds

◊ Finding mole ratios from chemical formulae

♦ Finding chemical formulae from a mole ratio

 \Diamond Interconverting number of atoms and mass of compound

♦ Elemental analysis of binary compounds

♦ Elemental analysis

◊ Finding a molecular formula from molar mass and elemental analysis of binary compounds

\Diamond Finding a molecular formula from molar mass and elemental analysis

♦ Combustion analysis

◊ Writing a chemical equation from a description of the reaction

\Diamond Writing the net equation for a sequence of reactions

◊ Solving for a reactant using a chemical equation

◊ Identifying the limiting reactant in a drawing of a mixture

♦ Solving moles–to–moles limiting reactant problems

♦ Limiting reactants

◊ Understanding theoretical, actual, and percent yield

♦ Theoretical yield of chemical reactions

◊ Percent yield of chemical reactions

◊ Reaction sequence stoichiometry

♦ Calculating ion molarity using solute mass

♦ Solving for a reactant in solution

◊ Solving limiting reactant problems in solution

• Simple Reactions (22 topics)

 \Diamond Predicting the products of dissolution

◊ Identifying the correct sketch of a compound in aqueous solution

Vriting net ionic equations

◊ Predicting precipitation

◊ Identifying acids and bases by their chemical formula

◊ Predicting the products of a neutralization reaction

◊ Determining the volume of base needed to titrate a given mass of acid

◊ Determining the molar mass of an acid by titration

◊ Standardizing a base solution by titration

◊ Assigning oxidation numbers

 \Diamond Recognizing reduction and oxidation

Identifying oxidizing and reducing agents

◊ Identifying oxidized and reduced reactants in a metal–nonmetal reaction

◊ Identifying oxidized and reduced reactants in a single–displacement reaction

 \Diamond Predicting whether simple electrochemical reactions happen

◊ Solving a redox titration problem

◊ Identifying combination, decomposition, single and double displacement reactions

◊ Identifying precipitation, combustion and acid–base reactions

◊ Predicting the products of a combustion reaction

◊ Predicting the products of a single displacement reaction involving hydrogen

◊ Predicting the products of a gas–evolving double displacement reaction

◊ Predicting products from a general statement about reactivity

• Thermochemistry (23 topics)

◊ Understanding how kinetic energy scales with mass and speed

♦ Calculating kinetic energy

◊ Using conservation of energy to predict the qualitative exchange of kinetic and potential energy

♦ Calculating pressure–volume work

◊ Understanding the definitions of heat and work

◊ Understanding the definition of enthalpy

♦ Interconverting calories and joules

◊ Calculating specific heat capacity

 \diamond Using specific heat capacity to find heat

◊ Using specific heat capacity to find temperature change

♦ Calculating molar heat capacity

◊ Solving a basic calorimetry problem

◊ Finding the equilibrium temperature when substances at different temperatures mix

◊ Using the general properties of reaction enthalpy

◊ Calculating the heat of reaction from molar reaction enthalpy and the mass of a reactant

◊ Calculating heat of reaction from constant–pressure calorimetry data

[◊] Calculating heat of reaction from bomb calorimetry data

◊ Using Hess's Law to calculate net reaction enthalpy

Vriting a standard formation reaction

◊ Calculating a molar heat of reaction from formation enthalpies

◊ Solving combustion thermochemistry problems

◊ Calculating the heat of reaction from bond energies and Lewis structures

♦ Calculating the heat of reaction from bond energies

◆ Electronic Structure and Chemical Bonding (73 topics)

♦ Understanding the meaning of a de Broglie wavelength

◊ Finding the minimum uncertainty in a position or velocity measurement

◊ Interpreting the radial probability distribution of an orbital

◊ Interpreting the angular probability distribution of an orbital ♦ Recognizing s and p orbitals ♦ Deducing n and 1 from a subshell label ◊ Deciding the relative energy of electron subshells ◊ Drawing a box diagram of the electron configuration of an atom ◊ Deducing the allowed quantum numbers of an atomic electron ◊ Calculating the capacity of electron subshells ♦ Knowing the subshells of an electron shell ◊ Interpreting the electron configuration of a neutral atom ◊ Interpreting the electron configuration of a neutral atom in noble–gas notation Viriting the electron configuration of a neutral atom with s and p electrons only **Vriting the electron configuration of a neutral atom with a filled d subshell** ◊ Interpreting the electron configuration of an atom or atomic ion ◊ Interpreting the electron configuration of an atom or atomic ion in noble–gas notation **Viriting the electron configuration of an atom or atomic ion with s and p electrons only Vriting the electron configuration of an atom using the Periodic Table** ◊ Identifying quantum mechanics errors in electron configurations ◊ Identifying the electron added or removed to form an ion from an s or p block atom ◊ Identifying the electron added or removed to form an ion ◊ Identifying s, p, d and f block elements ◊ Identifying elements with a similar valence electron configuration ◊ Understanding the definitions of ionization energy and electron affinity ◊ Predicting the relative ionization energy of elements ◊ Deducing valence electron configuration from trends in successive ionization energies ♦ Ranking the screening efficacy of atomic orbitals ♦ Understanding periodic trends in effective nuclear charge • Deducing the block of an element from an electron configuration ◊ Understanding periodic trends in atomic size ◊ Understanding periodic trends in atomic ionizability ◊ Understanding the organization of the electromagnetic spectrum ◊ Interconverting the wavelength and frequency of electromagnetic radiation ◊ Interconverting wavelength, frequency and photon energy ◊ Calculating the wavelength of a spectral line from an energy diagram ◊ Predicting the qualitative features of a line spectrum ◊ Calculating the wavelength of a line in the spectrum of hydrogen ◊ Counting bonding and nonbonding electron pairs in a Lewis structure • Counting electron pairs in a Lewis structure with double or triple bonds ◊ Counting valence electrons in a molecule or polyatomic ion ◊ Deciding whether a Lewis structure satisfies the octet rule **◊** Writing Lewis structures for diatomic molecules ◊ Predicting the single–bonded molecular compounds formed by two elements ◊ Predicting the compound formed by two main group elements ♦ Calculating formal charge ◊ Writing Lewis structures for a molecule with one central atom and no octet–rule exceptions Recognizing exceptions to the octet rule
 ♦ Writing Lewis structures for an expanded valence shell central atom ♦ Writing the Lewis structures for a molecule with resonance ◊ Drawing Lewis structures for simple organic compounds ♦ Predicting the relative electronegativities of atoms ♦ Predicting bond polarity ♦ Predicting relative bond polarity Ore Predicting the relative ionic character of chemical bonds ◊ Predicting the relative length and energy of chemical bonds

◊ Predicting the arrangement of electron groups around the central atom of a molecule

◊ Identifying a molecule with one central atom from its 3D shape

 \Diamond Using the AXE notation to describe a molecule with a central atom

 \Diamond Naming the shape of molecules with one central atom and no octet–rule exceptions

◊ Predicting bond angles in molecules with one central atom and no octet–rule exceptions

 \Diamond Predicting bond angles in a small organic molecule

 \Diamond Predicting and naming the shape of molecules with a central atom

 \Diamond Predicting deviations from ideal bond angles

 \Diamond Predicting whether molecules are polar or nonpolar

◊ Naming common chemical groups

 \Diamond Identifying common chemical groups in a Lewis structure

 \Diamond Identifying hybridization in a small molecule

 \Diamond Counting sigma and pi bonds in a small molecule

 \Diamond Identifying carbon hybridization in simple organic molecules

◊ Recognizing typical LCAO molecular orbitals

 \Diamond Drawing the MO energy diagram for a Period 2 homodiatom

 \Diamond Using the MO model to predict bond order and paramagnetism

♦ Gases (27 topics)

 \Diamond Interconverting pressure and force

 \Diamond Interconverting atmospheres and kilopascals

 \Diamond Interconverting atmospheres and torr

 \Diamond Understanding pressure equilibrium and atmospheric pressure

◊ Understanding Boyle's Law

 \Diamond Solving applications of Boyle's Law

◊ Using Charles's Law

 \Diamond Using the combined gas law

◊ Using Avogadro's Law

 \Diamond Using the ideal equation of state

 \Diamond Interconverting molar mass and density of ideal gases

Ocalculating partial pressure of a gas from a sketch

◊ Calculating mole fraction in a gas mixture

Ocalculating partial pressure in a gas mixture

 \Diamond Calculating the mass of a gas collected over water

 \Diamond Solving for a gaseous reactant

 \Diamond Understanding how average molecular kinetic energy scales with temperature

 \Diamond Understanding how average molecular speed scales with temperature and molar mass

 \Diamond Interpreting a graph of molecular speed distribution

 \Diamond Predicting how molecular speed distribution changes with temperature and molar mass

♦ Calculating average molecular speed

 \Diamond Understanding how molecular collision rate scales with temperature and volume

 \Diamond Using relative effusion rates to find an unknown molar mass

 \Diamond Using thermodynamic state to order the ideality of gases

 \Diamond Identifying the origin of nonideality in a gas

 \Diamond Understanding the origin of the van der Waals equation of state

 \diamond Using the van der Waals equation of state

♦ Advanced General Chemistry (256 topics)

◊ Identifying a molecule from its electrostatic potential map

 \Diamond Predicting the strength of intermolecular forces from an electrostatic potential map

 \Diamond Identifying hydrogen–bonding interactions between molecules

 \Diamond Identifying the intermolecular forces between atoms, ions and molecules

◊ Identifying the important intermolecular forces in pure compounds

 \Diamond Predicting the relative strength of the dispersion force between molecules

Oredicting the relative boiling points of pure substances

◊ Identifying important physical properties of liquids ◊ Understanding consequences of important physical properties of liquids ♦ Relating vapor pressure to vaporization ◊ Understanding the connection between vapor pressure, boiling point, and enthalpy of vaporization ◊ Calculating vapor pressure from boiling point and enthalpy of vaporization ◊ Calculating enthalpy of vaporization from vapor pressure ◊ Predicting the type of solid formed by a compound ◊ Predicting the relative stability of ionic crystals from a sketch ◊ Predicting the relative lattice energy of binary ionic compounds ♦ Interpreting a Born–Haber cycle ♦ Drawing the unit cell of a 2D lattice ♦ Counting the atoms in a unit cell ♦ Recognizing and naming close–packed crystal lattices **Ore Recognizing and naming lattices with cubic unit cells** ◊ Calculating key distances in the fcc unit cell ♦ Calculating key distances in the bcc unit cell ◊ Finding an atomic radius from an fcc or bcc lattice constant ♦ Finding density from an fcc or bcc lattice constant ◊ Using heat of fusion or vaporization to find the heat needed to melt or boil a substance ◊ Using a phase diagram to predict phase at a given temperature and pressure ♦ Labeling a typical simple phase diagram ◊ Using a phase diagram to find a phase transition temperature or pressure ◊ Sketching a described thermodynamic change on a phase diagram ◊ Identifying phase transitions on a heating curve ♦ Interpreting a heating curve ♦ Drawing a heating curve ♦ Calculating mass percent composition ◊ Using mass percent composition to find solution volume ◊ Calculating volume percent composition ♦ Finding mass or volume from percent concentration ◊ Calculating ionic solution composition in equivalents ◊ Solving applied equivalents composition problems ♦ Calculating molality ♦ Calculating mole fraction ♦ Calculating mass concentration ◊ Using mass concentration to find solute mass and solution volume ♦ Solving applied mass concentration problems ◊ Solving applied dilution problems ♦ Applying like dissolves like ♦ Calculating solubility ◊ Using solubility to calculate solute mass or solution volume ◊ Understanding how solubility varies with temperature and pressure ◊ Understanding conceptual components of the enthalpy of solution ◊ Using Henry's Law to calculate the solubility of a gas ◊ Predicting the relative heat of hydration of ions ◊ Predicting relative boiling point elevations and freezing point depressions ♦ Using the Kf and Kb equations **Olymphic State** Using the Kf and Kb equations with electrolytes ◊ Calculating and using the van't Hoff factor for electrolytes ◊ Using osmotic pressure to find molar mass ◊ Using a solution freezing point to calculate a molar mass ◊ Using Raoult's Law to calculate the vapor pressure of a component ◊ Calculating ideal solution composition after a distillation

◊ Predicting how reaction rate varies with pressure, concentration and temperature ◊ Calculating the reaction rate of one reactant from that of another ◊ Calculating average and instantaneous reaction rate from a graph of concentration versus time ♦ Using a rate law **Output** Using reactant reaction order to predict changes in initial rate ◊ Deducing a rate law from initial reaction rate data ◊ Calculating the change in concentration after a whole number of half–lives of a first–order reaction ◊ Using a zero order integrated rate law to find concentration change ◊ Using an integrated rate law for a first–order reaction ♦ Using a second–order integrated rate law to find concentration change ♦ Using first– and second–order integrated rate laws ◊ Deducing a rate law from the change in concentration over time ◊ Finding half life and rate constant from a graph of concentration versus time ◊ Solving applied problems with first–order kinetics ♦ Interpreting a reaction energy diagram ♦ Relating activation energy to reaction rate ◊ Drawing the reaction energy diagram of a catalyzed reaction ◊ Understanding the qualitative predictions of the Arrhenius equation ◊ Using the Arrhenius equation to calculate k at one temperature from k at another ◊ Using the Arrhenius equation to calculate Ea from k versus T data ◊ Identifying the molecularity of an elementary reaction ◊ Identifying intermediates in a reaction mechanism ♦ Writing a plausible missing step for a simple reaction mechanism **Vriting the rate law of an elementary reaction** ♦ Writing the rate law implied by a simple mechanism with an initial slow step ◊ Expressing the concentration of an intermediate in terms of the concentration of reactants **Vriting the rate law implied by a simple mechanism** ◊ Deducing information about reaction mechanisms from a reaction energy diagram \diamond Understanding that no reaction goes to 100% completion ◊ Predicting relative forward and reverse rates of reaction in a dynamic equilibrium **Output** Using Le Chatelier's Principle to predict the result of changing concentration **Output** Using Le Chatelier's Principle to predict the result of changing temperature **Vriting a concentration equilibrium constant expression** ◊ Writing a pressure equilibrium constant expression **Viriting the concentration equilibrium expression for a heterogeneous equilibrium** ♦ Writing the pressure equilibrium expression for a heterogeneous equilibrium ◊ Calculating an equilibrium constant from an equilibrium composition ◊ Calculating an equilibrium constant from a heterogeneous equilibrium composition ◊ Using an equilibrium constant to predict the direction of spontaneous reaction ◊ Using the general properties of equilibrium constants ♦ Interconverting Kp and Kc ♦ Writing an equilibrium constant for a reaction sequence ♦ Recognizing equilibrium from a sketch ◊ Predicting equilibrium composition from a sketch ◊ Setting up a reaction table ◊ Calculating equilibrium composition from an equilibrium constant ♦ Using the small x approximation to solve equilibrium problems ◊ Calculating an equilibrium constant from a partial equilibrium composition ◊ Calculating an equilibrium composition after a prior equilibrium determines K ◊ Solving problems that mix equilibrium ideas with gas laws ◊ Using the van't Hoff equation to predict K at a different temperature ♦ Writing a solubility product (Ksp) expression ◊ Using Ksp to calculate the solubility of a compound

♦ Using the solubility of a compound to calculate Ksp ◊ Calculating the solubility of an ionic compound when a common ion is present ◊ Understanding the effect of pH on the solubility of ionic compounds **Vriting a complex ion formation constant expression** ◊ Using Kf to calculate the equilibrium molarity of a complex ◊ Calculating the solubility of an ionic compound when a complex may form ◊ Identifying acids and bases by their reaction with water ♦ Understanding the difference between strong and weak acids ◊ Identifying Bronsted–Lowry acids and bases ◊ Identifying strong or weak acids and bases from a sketch ♦ Finding the conjugate of an acid or base ◊ Predicting acid or base strength from the conjugate ◊ Predicting the products of the reaction of a strong acid with water Ore Predicting the reactants of a neutralization reaction ◊ Predicting the qualitative acid–base properties of salts ♦ Predicting the qualitative acid–base properties of metal cations ♦ Identifying Lewis acids and bases in reactions ◊ Predicting the acid–base properties of a binary oxide in water ♦ Naming inorganic acids ◊ Deducing the formulae of inorganic acids from their names ♦ Naming acid salts Recognizing common acids and bases ♦ Predicting the relative acidity of binary acids ♦ Understanding the effect of induction on acidity ♦ Interconverting pH and hydronium ion concentration ♦ Interconverting pH and pOH at 25°C ♦ Interconverting hydronium and hydroxide concentration at 25°C ♦ Making qualitative estimates of pH change ◊ Calculating the pH of a strong acid solution ◊ Calculating the pH of a strong base solution ◊ Diluting a strong acid solution to a given pH ◊ Preparing a strong base solution with a given pH Vriting an acid dissociation constant expression ♦ Determining the strength of acids from a sketch ◊ Calculating the Ka of a weak acid from pH ◊ Calculating the pH of a weak acid solution ♦ Writing a base protonation constant expression ◊ Calculating the pH of a weak base solution \diamond Deriving K_b from K_a ♦ Interconverting Ka and pKa ♦ Calculating the pH of a salt solution ♦ Calculating percent dissociation of a weak acid ◊ Understanding connections between descriptions of weak acid dissociation ♦ Calculating the pH of a dilute acid solution **Vriting the dissociation reactions of a polyprotic acid** ♦ Solving a polyprotic acid equilibrium composition problem ♦ Calculating the pH of a weak acid titrated with a strong base ◊ Calculating the pH of a weak base titrated with a strong acid ◊ Calculating the pH at equivalence of a titration ◊ Identifying the major species in weak acid or weak base equilibria Setting up a reaction table for a pH calculation with a common ion ♦ Calculating the pH of a buffer ◊ Calculating the composition of a buffer of a given pH

◊ Calculating entropy change from reversible heat flow ◊ Calculating absolute entropy using the Boltzmann hypothesis ◊ Calculating entropy change using the Boltzmann hypothesis ◊ Predicting qualitatively how entropy changes with temperature and volume ◊ Predicting qualitatively how entropy changes with mixing and separation ♦ Qualitatively predicting reaction entropy ◊ Using the Second Law to predict spontaneous change ◊ Calculating reaction entropy using the standard molar entropies of reactants ◊ Using the general properties of Gibbs free energy ♦ Calculating dG from dH and dS ◊ Using the conditions of spontaneity to deduce the signs of H and S ⁽) Calculating standard reaction free energy from standard free energies of formation **Estimating a phase transition temperature from standard thermodynamic data** ◊ Interconverting standard Gibbs free energy and K ◊ Using thermodynamic data to calculate K ◊ Recognizing consistency between statements about standard Gibbs free energy ◊ Using the maximum work theorem with chemical work ◊ Calculating reaction free energy under nonstandard conditions ◊ Using reaction free energy to predict equilibrium composition ◊ Writing a simple half–reaction from its description **Vriting the half-reactions of a metal-nonmetal reaction Vriting the half-reactions of a single-displacement reaction** Vriting and balancing complex half–reactions in acidic solution ♦ Writing and balancing complex half–reactions in basic solution **Orall Balancing a complex redox equation in acidic or basic solution** ♦ Writing the half–reactions of a complex redox reaction in acidic or basic solution ◊ Designing a galvanic cell from a single–displacement redox reaction ◊ Designing a galvanic cell from two half–reactions ♦ Analyzing a galvanic cell ◊ Picking a reduction or oxidation that will make a galvanic cell work **O** Ranking the strength of oxidizing and reducing agents using standard reduction potentials ◊ Calculating standard reaction free energy from standard reduction potentials ◊ Recognizing consistency among equilibrium constant, free energy, and cell potential ◊ Using the Nernst equation to calculate nonstandard cell voltage ♦ Understanding concentration cells ◊ Using the relationship between charge, current and time ♦ Using the Faraday constant ♦ Analyzing the electrolysis of molten salt ◊ Calculating the mass of an electrolysis product from the applied current ◊ Understanding main–group periodic trends in ionization energy ◊ Understanding main–group periodic trends in atomic radius ◊ Understanding main–group periodic trends in metallicity ◊ Predicting the most positive and negative oxidation states of main–group elements ◊ Predicting the common oxidation states of main–group elements ◊ Predicting the hydride formed by a main–group element ◊ Predicting the oxide formed by a main–group element ◊ Identifying a main–block group from its general properties ◊ Identifying a main–block group from an element oxide ◊ Identifying a main–block group from an element halide ◊ Predicting the type of bonding in a main–group element ◊ Assessing the consistency of statements relating to main–group valence electron configuration ◊ Predicting the products of the reaction of a Group 1A or 2A metal with water ◊ Predicting the products of the reaction of a Group 1A or 2A metal with oxygen

◊ Predicting the products of the reaction of elements at either end of the Periodic Table ◊ Identifying Group 3A elements ◊ Identifying Group 4A elements ◊ Identifying Group 5A elements ◊ Identifying Group 6A elements ◊ Understanding the chemical formulae of interhalogens ◊ Understanding how halide bond length varies down a main–block group **Ordering the melting points of elements at either end of the Periodic Table** ♦ Ranking the oxidizing power of halogens ◊ Writing the electron configuration of a first transition series atom ♦ Interpreting an outer electron box diagram **Orawing the outer electron box diagram of a transition metal cation** ◊ Identifying transition metal cations with a given number of d electrons **O** Deducing the number of d electrons and unpaired spins in a transition metal cation ◊ Understanding the exceptional electron configurations in the first transition series ◊ Understanding words that describe where transition metals lie in the Periodic Table ◊ Predicting the relative atomic radius of a transition metal atom ◊ Predicting the relative density of a transition metal ◊ Predicting the relative melting point of a transition metal ◊ Predicting the highest common oxidation state of a metal in the first transition series ◊ Predicting the reaction of a transition metal with a strong acid ♦ Writing the formula of a metal complex from its description ♦ Recognizing typical metal ligands ◊ Determining the oxidation state of the metal in a complex ion ◊ Naming complex cations with one type of ligand ♦ Naming complex anions with one type of ligand ♦ Naming complex ions **O** Determining the oxidation state of the metal in a coordination compound Naming coordination compounds ◊ Determining the coordination number of a metal in a complex **Our Content of Section** Understanding the connection between geometry and coordination number of a metal complex ◊ Distinguishing isomers and alternate views of a metal complex ◊ Drawing an isomer of a metal complex ◊ Drawing cis and trans isomers of a metal complex Adding electrons to a crystal field theory energy level diagram ◊ Predicting color and magnetic properties from a crystal field theory energy level diagram ♦ Drawing a crystal field theory energy level diagram ◆ Nuclear Chemistry (14 topics) ♦ Interpreting the symbol for a nuclide **Vriting the symbols in a nuclear chemical equation** ♦ Balancing a nuclear chemical equation ◊ Writing the equation for a typical radioactive decay ◊ Calculating the energy change in a nuclear reaction from the mass change ◊ Knowing the properties of the common types of nuclear radiation ◊ Understanding the common modes of radioactive decay ♦ Understanding radioactive half life ♦ Interconverting amount of radioactive decay and half life ◊ Calculating radioactive activity from half life ◊ Using isotope ratios to radiodate ♦ Using activity to radiodate **\Diamond** Knowing units of radiation dosage and exposure ◊ Identifying important types of nuclear medicine procedure • Organic Chemistry and Biochemistry (157 topics)

Copyright © 2025 UC Regents and ALEKS Corporation. ALEKS is a registered trademark of ALEKS Corporation. 14/18

♦ Identifying organic compounds ◊ Identifying rigid parts of an acyclic organic molecule ◊ Identifying hydrophobic and hydrophilic parts of an organic molecule ◊ Interpreting condensed chemical structures ◊ Interpreting condensed chemical structures with benzene rings ◊ Interpreting the skeletal structure of a neutral organic molecule ◊ Drawing a skeletal structure from a simple condensed structure ◊ Drawing a skeletal structure from a condensed structure ♦ Interpreting a skeletal structure with aromatic rings ♦ Recognizing different skeletal structures Ounderstanding H atoms in a skeletal structure ◊ Comparing skeletal structures related by one fewer bond ♦ Using wedges and dashes in skeletal structures ◊ Naming normal alkanes ◊ Identifying the main chain of branched alkanes ♦ Naming the parent hydrocarbon of branched alkanes ♦ Naming alkyl side chains ♦ Identifying organic functional groups ◊ Using family suffixes to name organic compounds ◊ Understanding the basic descriptive vocabulary of hydrocarbons ◊ Understanding the basic descriptive vocabulary of molecules with functional groups ◊ Numbering the main chain of branched alkanes ♦ Naming and drawing small alkyl substituents ◊ Naming and drawing alkyl and alkoxy substituents ♦ Identifying constitutional isomers ◊ Drawing the condensed structure of a constitutional isomer ◊ Drawing the skeletal structure of a constitutional isomer ◊ Identifying a chiral molecule from its condensed structure ◊ Identifying chiral centers in a cyclic molecule ◊ Drawing the mirror image of a simple organic molecule ◊ Identifying the enantiomer of a simple organic molecule ◊ Classifying organic reactions Recognizing organic acids and bases ◊ Deducing oxidation state from a Lewis structure ◊ Identifying oxidation and reduction in organic reactions ♦ Naming branched alkanes ♦ Using multiplying affixes in the names of branched alkanes ♦ Naming and drawing normal alkanes. ♦ Naming and drawing simple cyclic alkanes ♦ Naming and drawing branched alkanes ♦ Naming and drawing simple substituted cycloalkanes ♦ Naming unbranched alkenes and alkynes ♦ Naming alkenes and alkynes ♦ Naming and drawing linear alkenes with one double bond ◊ Identifying cis/trans isomerism in a small condensed structure ◊ Identifying cis/trans isomerism in a skeletal structure ◊ Drawing the cis or trans isomer of a small alkene ♦ Naming benzene derivatives ◊ Predicting the reactants or products of alkene hydrogenation ◊ Predicting the reactants or products of alkene hydration ♦ Naming alkyl halides ♦ Naming and drawing alkyl halides ♦ Naming alcohols

♦ Naming and drawing alcohols without alkyl side groups ♦ Naming and drawing thiols without alkyl side groups ♦ Naming and drawing alcohols ◊ Identifying primary, secondary, and tertiary alcohols ◊ Identifying common alcohols from a description ◊ Predicting the products of symmetric alcohol dehydration ◊ Predicting the reactants or products of alcohol oxidation ◊ Understanding the common names of simple ethers ◊ Understanding the common names of simple ketones ♦ Naming and drawing ketones ♦ Naming and drawing aldehydes ◊ Predicting the reactants or products of alcohol and aldehyde oxidation ◊ Predicting the reactants or products of carbonyl reduction ◊ Identifying and drawing hemiacetals and acetals **Ore Predicting the reactants or products of hemiacetal and acetal formation** ◊ Predicting the reactants or products of acetal hydrolysis ◊ Understanding the common names of simple amines ◊ Identifying primary, secondary, and tertiary amines ♦ Naming and drawing primary amines without alkyl side groups ♦ Naming and drawing secondary and tertiary amines ♦ Naming aldehydes and acids ♦ Naming and drawing carboxylic acids ◊ Understanding the names of carboxylate salts ◊ Naming and drawing unsubstituted esters ◊ Identifying primary, secondary, and tertiary amides ♦ Naming and drawing unsubstituted amides ◊ Understanding common names of carboxylic acids and derivatives ◊ Identifying positions labeled with Greek letters in acids and derivatives ♦ Knowing the common names of small diacids ♦ Predicting the reactants or products of esterification ◊ Predicting the reactants or products of ester hydrolysis In Predicting the products of ester saponification ◊ Predicting the reactants or products of amidation ◊ Predicting the products of amide hydrolysis ◊ Understanding the descriptive vocabulary of monosaccharides ◊ Drawing the Fischer projection of the enantiomer of a monosaccharide ◊ Drawing the Haworth projection of an aldose from its Fischer projection ◊ Drawing the Haworth projection of a ketose from its Fischer projection Naming and drawing cyclic monosaccharides ◊ Identifying a given carbon in a cyclic monosaccharide ◊ Naming and drawing the products of aldose oxidation and reduction ◊ Identifying the parts of a disaccharide **\Diamond** Knowing the names and properties of common sugars ◊ Identifying common polysaccharides ◊ Understanding the glycosidic links in common polysaccharides ◊ Understanding the basic descriptive vocabulary of fatty acids ♦ Understanding lipid number notation ◊ Understanding melting points trends of fatty acids ◊ Identifying the components of wax esters ◊ Identifying the parts of a triacylglycerol ◊ Identifying the parts of a glycerophospholipid ◊ Identifying the parts of a sphingomyelin ◊ Identifying molecules that could be in a cell membrane

♦ Recognizing the steroid nucleus ♦ Classifying lipids derived from fatty acids Matching structure and function of common lipids
◊ Predicting the products or reactants of triacylglycerol hydrogenation ◊ Predicting the products or reactants of triacylglycerol hydrolysis or saponification ♦ Recognizing alpha amino acids ♦ Classifying amino acids ◊ Identifying the stereochemistry of natural amino acids ◊ Understanding the general acid–base properties of amino acids ♦ Identifying and drawing peptide bonds ♦ Describing peptides with 3–letter codes ◊ Identifying specific interactions between residues in a protein ♦ Predicting the location in a protein of a residue sequence ◊ Naming an element of protein secondary structure from a description ◊ Identifying changes at different levels of protein structure ♦ Recognizing nucleotides ♦ Numbering the carbons in nucleotides ♦ Naming and drawing nucleosides ♦ Naming and drawing nucleotides ◊ Understanding the arrangement of hydrogen bonds in DNA base pairs ◊ Understanding the structure of nucleic acid strands ◊ Writing complementary DNA sequences ◊ Understanding that DNA replication is semiconservative ◊ Identifying the major types of RNA from a description **Our Content of Section** Understanding the relationship between DNA and mRNA base sequences ♦ Using the genetic code ♦ Classifying mutations ◊ Predicting reactants or products of phosphorylation ◊ Predicting the products of phosphoester or phosphoanhydride hydrolysis ◊ Understanding major biochemical energy storage and release reactions ◊ Identifying common redox coenzymes by their roles in a reaction ♦ Understanding the formation and hydrolysis of acyl–CoA Knowing basic facts about enzymes ♦ Classifying enzymes ◊ Identifying reactants and products from an enzyme name ◊ Understanding basic models of competitive and noncompetitive inhibition ♦ Predicting the effect of temperature or pH on enzyme activity ◊ Understanding the biochemistry of digestion **\U0065** Knowing inputs and outputs of the citric acid cycle ◊ Understanding the general mechanism of oxidative phosphorylation ◊ Solving citric acid cycle ATP stoichiometry problems ◊ Knowing inputs and outputs of glycolysis ♦ Completing a simplified diagram of glycolysis ◊ Completing a simplified diagram of glucose catabolism ♦ Solving carbohydrate catabolic stoichiometry problems ♦ Knowing the steps of beta oxidation ♦ Predicting the product of beta oxidation activation ♦ Knowing inputs and outputs of beta oxidation ◊ Solving fatty acid catabolic stoichiometry problems Oredicting the products of catabolic amino acid transamination ◊ Completing a diagram of protein catabolism

***Other Topics Available** *By default, these topics are NOT included in the course, but can be added using the content editor in the Teacher Module.*