ALEKS ${ }^{\circ}$

General Chemistry (First Quarter)

This course covers the topics shown below.
Students navigate learning paths based on their level of readiness.
Institutional users may customize the scope and sequence to meet curricular needs.
Curriculum (193 topics + 640 additional topics)

- Math and Physics (41 topics)
- Mathematics (10 topics)
- Integer multiplication and division
- Simplifying a fraction
- Equivalent fractions
- Signed fraction multiplication: Basic
- Signed fraction division
- Writing expressions using exponents
- Introduction to exponents
- Ordering numbers with positive exponents
- Evaluating an expression with a negative exponent: Whole number base
- Square root of a perfect square
- Algebra Expressions (13 topics)
- Evaluating a quadratic expression: Integers
- Combining like terms: Integer coefficients
- Combining like terms in a quadratic expression
- Using distribution and combining like terms to simplify: Univariate
- Introduction to the product rule of exponents
- Product rule with positive exponents: Univariate
- Introduction to the product rule with negative exponents
- Introduction to the quotient rule of exponents
- Simplifying a ratio of univariate monomials
- Quotient rule with negative exponents: Problem type 1
- Introduction to the power of a product rule of exponents
- Power and quotient rules with positive exponents
- Square root of a perfect square monomial
- Linear Equations (8 topics)
- Additive property of equality with integers
- Additive property of equality with a negative coefficient
- Multiplicative property of equality with signed fractions
- Solving a multi-step equation given in fractional form
- Solving a linear equation with several occurrences of the variable: Fractional forms with monomial numerators
- Solving a proportion of the form $\mathrm{a} /(\mathrm{x}+\mathrm{b})=\mathrm{c} / \mathrm{x}$
- Solving for a variable in terms of other variables using addition or subtraction with division
- Solving for a variable in terms of other variables in a linear equation with fractions
- Graphing Equations (4 topics)
- Classifying slopes given graphs of lines
- Graphing a line through a given point with a given slope
- Finding slope given the graph of a line on a grid
- Finding slope given two points on a line
- Graphing Data (2 topics)
- Constructing a scatter plot
- Mean of a data set
- Electrostatics (4 topics)
- Understanding that opposite charges attract and like charges repel
- Understanding net electrical charge
- Understanding how electrostatic force scales with charge and separation
- Understanding how electrostatic forces cancel
- Measurement and Matter (41 topics)
- Scientific Notation (2 topics)
- Converting between decimal numbers and numbers written in scientific notation
- Multiplying and dividing numbers written in scientific notation
- SI Units (6 topics)
- Knowing the dimension of common simple SI units
- Understanding the purpose of SI prefixes
- Knowing the value of an SI prefix as a power of 10
- Interconversion of prefixed and base SI units
- Interconversion of prefixed SI units
- Interconverting temperatures in Celsius and Kelvins
- Measurement Math (3 topics)
- Addition and subtraction of measurements
- Simplifying unit expressions
- Multiplication and division of measurements
- Measurement Uncertainty (6 topics)
- Counting significant digits
- Rounding to a given significant digit
- Counting significant digits when measurements are added or subtracted
- Counting significant digits when measurements are multiplied or divided
- Adding or subtracting and multiplying or dividing measurements
- Reading a measurement from an analog instrument
- Quantitative Problem Solving (6 topics)
- Setting up a one-step unit conversion
- Setting up a unit reprefix conversion
- Predicting the units of the solution to a basic quantitative problem
- Setting up the solution to a basic quantitative problem
- Identifying errors in the solution to a basic quantitative problem
- Setting up the math for a one-step quantitative problem
- Mass, Volume and Density (6 topics)
- Estimating the volume in liters of a square prism object
- Finding the side length of a cube from its volume in liters
- Understanding the relationship between mass, volume, and density
- Calculating mass density
- Using mass density to find mass or volume
- Solving applied density problems
- Substances (2 topics)
- Naming common laboratory separation techniques
- Distinguishing extensive and intensive properties
- Atomic Theory (5 topics)
- Distinguishing elements and compounds
- Distinguishing compounds and mixtures
- Classifying substances from a sketch
- Distinguishing chemical and physical change
- Distinguishing solid, liquid and gas phases of a pure substance
- Chemical Elements (5 topics)
- Names and symbols of important elements
- Reading a Periodic Table entry
- Recognizing element families
- Organization of the Periodic Table
- Standard chemical and physical states of the elements
- Atoms, Ions and Molecules (27 topics)
- Atomic Structure (7 topics)
- Identifying the parts of an atom
- Counting protons and electrons in atoms and atomic ions
- Finding isoelectronic atoms
- Predicting the ions formed by common main-group elements
- Isotopes
- Finding atomic mass from isotope mass and natural abundance
- Counting valence electrons in a neutral atom
- Chemical Compounds (6 topics)
- Counting the number of atoms in a formula unit
- Writing a chemical formula given a molecular model
- Writing a chemical formula given a chemical structure
- Understanding the difference between a molecular and empirical formula
- Understanding the prefixes used in naming binary compounds
- Naming binary covalent compounds
- Ionic Compounds (14 topics)
- Predicting whether a compound is ionic or molecular
- Distinguishing an ionic from a molecular compound by physical properties
- Predicting the formula of binary ionic compounds
- Naming binary ionic compounds
- Deducing the ions in a binary ionic compound from its empirical formula
- Deducing the empirical formula of a binary ionic compound from its name
- Predicting and naming ionic compounds formed by two elements
- Identifying common polyatomic ions
- Predicting the formula of ionic compounds with common polyatomic ions
- Naming ionic compounds with common polyatomic ions
- Deducing the ions in a polyatomic ionic compound from its empirical formula
- Identifying oxoanions
- Naming ionic compounds with common oxoanions
- Naming hydrates
- Chemical Reactions (40 topics)
- Moles and Molar Mass (4 topics)
- Calculating and using the molar mass of elements
- Finding chemical formulae from a mole ratio
- Finding molar mass from chemical formulae
- Interconverting number of atoms and mass of compound
- Elemental Analysis (3 topics)
- Finding mass percent from chemical formulae
- Solving applied mass percent problems
- Elemental analysis
- Chemical Equations (5 topics)
- Stoichiometric coefficients
- Balancing chemical equations with interfering coefficients
- Writing a chemical equation from a description of the reaction
- Writing a chemical equation from a molecular movie
- Writing the net equation for a sequence of reactions
- Reaction Stoichiometry (9 topics)
- Using a chemical equation to find moles of product from moles of reactant
- Solving for a reactant using a chemical equation
- Identifying the limiting reactant in a drawing of a mixture
- Solving moles-to-moles limiting reactant problems
- Limiting reactants
- Understanding theoretical, actual, and percent yield
- Theoretical yield of chemical reactions
- Percent yield of chemical reactions
- Reaction sequence stoichiometry
- Solution Stoichiometry (6 topics)
- Calculating molarity using solute moles
- Calculating molarity using solute mass
- Using molarity to find solute mass and solution volume
- Dilution
- Solving for a reactant in solution
- Solving limiting reactant problems in solution
- Precipitation (2 topics)
- Identifying the correct sketch of a compound in aqueous solution
- Writing net ionic equations
- Acid-Base Reactions (3 topics)
- Identifying acids and bases by their chemical formula
- Predicting the products of a neutralization reaction
- Determining the volume of base needed to titrate a given mass of acid
- Oxidation-Reduction Reactions (5 topics)
- Assigning oxidation numbers
- Recognizing reduction and oxidation
- Identifying oxidizing and reducing agents
- Predicting whether simple electrochemical reactions happen
- Solving a redox titration problem
- Predicting Products (3 topics)
- Identifying precipitation, combustion and acid-base reactions
- Predicting the products of a combustion reaction
- Predicting products from a general statement about reactivity
- Thermochemistry (17 topics)
- Energy (5 topics)
- Understanding how kinetic energy scales with mass and speed
- Using conservation of energy to predict the qualitative exchange of kinetic and potential energy
- Calculating pressure-volume work
- Understanding the definitions of heat and work
- Understanding the definition of enthalpy
- Calorimetry (4 topics)
- Calculating specific heat capacity
- Using specific heat capacity to find heat
- Using specific heat capacity to find temperature change
- Solving a basic calorimetry problem
- Reaction Enthalpy (8 topics)
- Using the general properties of reaction enthalpy
- Calculating the heat of reaction from molar reaction enthalpy and the mass of a reactant
- Calculating heat of reaction from constant-pressure calorimetry data
- Using Hess's Law to calculate net reaction enthalpy
- Writing a standard formation reaction
- Calculating a molar heat of reaction from formation enthalpies
- Solving combustion thermochemistry problems
- Calculating the heat of reaction from bond energies and Lewis structures
- Electronic Structure and Chemical Bonding (23 topics)
- Quantum Mechanics (2 topics)
- Interpreting the radial probability distribution of an orbital
- Recognizing s and p orbitals
- Electron Configuration (8 topics)
- Deducing n and I from a subshell label
- Deciding the relative energy of electron subshells
- Drawing a box diagram of the electron configuration of an atom
- Writing the electron configuration of a neutral atom with a filled d subshell
- Interpreting the electron configuration of an atom or atomic ion in noble-gas notation
- Writing the electron configuration of an atom or atomic ion with s and p electrons only
- Writing the electron configuration of an atom using the Periodic Table
- Identifying quantum mechanics errors in electron configurations
- Electronic Properties of The Elements (9 topics)
- Identifying s, p, d and f block elements
- Identifying elements with a similar valence electron configuration
- Understanding the definitions of ionization energy and electron affinity
- Deducing valence electron configuration from trends in successive ionization energies
- Ranking the screening efficacy of atomic orbitals
- Understanding periodic trends in effective nuclear charge
- Deducing the block of an element from an electron configuration
- Understanding periodic trends in atomic size
- Understanding periodic trends in atomic ionizability
- Atomic Spectroscopy (4 topics)
- Understanding the organization of the electromagnetic spectrum
- Interconverting wavelength, frequency and photon energy
- Calculating the wavelength of a spectral line from an energy diagram
- Predicting the qualitative features of a line spectrum
- Acids and Bases (4 topics)
- Acid-Base Nomenclature (4 topics)
- Naming inorganic acids
- Deducing the formulae of inorganic acids from their names
- Naming acid salts
- Recognizing common acids and bases
- Other Topics Available(*) (640 additional topics)
- Math and Physics (79 topics)
- Signed fraction addition or subtraction: Basic
- Exponents and fractions
- Introduction to inequalities
- Introduction to order of operations
- Evaluating expressions with exponents of zero
- Evaluating an expression with a negative exponent: Positive fraction base
- Complex fraction without variables: Problem type 1
- Introduction to square root multiplication
- Absolute value of a number
- Distributive property: Integer coefficients
- Rewriting an algebraic expression without a negative exponent

Squaring a binomial: Univariate
Multiplying binomials with leading coefficients greater than 1
Multiplying rational expressions involving multivariate monomials
Complex fraction involving univariate monomials
Writing a one-step expression for a real-world situation
Writing a multi-step equation for a real-world situation
Identifying solutions to a linear equation in one variable: Two-step equations

- Identifying solutions to a linear equation in two variables

Solving a rational equation that simplifies to linear: Denominat or $x+a$
Solving a word problem with two unknowns using a linear equation
Additive property of inequality with integers
Solving a two-step linear inequality: Problem type 2
Solving a quadratic equation using the square root property: Decimal answers, basic
Solving a quadratic equation using the square root property: Decimal answers, advanced
Applying the quadratic formula: Decimal answers
Discriminant of a quadratic equation
Introduction to solving a radical equation
Solving a radical equation that simplifies to a linear equation: One radical, basic
Graphing a line given its equation in slope-intercept form: Fractional slope
Writing the equation of a line given the y-intercept and another point
Finding the slope and y-intercept of a line given its equation in the form $A x+B y=C$
Finding x - and y-intercepts given the graph of a line on a grid
Finding x - and y-intercepts of a line given the equation: Advanced
Sketching the line of best fit
Scatter plots and correlation
Approximating the equation of a line of best fit and making predictions
Classifying linear and nonlinear relationships from scatter plots
Linear relationship and the correlation coefficient
Choosing a graph to fit a narrative: Basic
Choosing a graph to fit a narrative: Advanced
Constructing a histogram for numerical data
Finding the mean of a symmetric distribution
Population standard deviation
Word problem involving calculations from a normal distribution
Evaluating a logarithmic expression
Solving an equation of the form $\log _{b} a=c$
Basic properties of logarithms
Expanding a logarithmic expression: Problem type 1
Expanding a logarithmic expression: Problem type 2
Writing an expression as a single logarithm
Evaluating an exponential function with base e that models a real-world situation
Converting between common logarithmic and exponential equations
Converting between natural logarithmic and exponential equations
Solving a multi-step equation involving natural logarithms
Solving an exponential equation by using logarithms: Decimal answers, basic
Solving an exponential equation by using natural logarithms: Decimal answers
Graphing an exponential function and its asymptote: $f(x)=a(e)^{x-b}+c$
Finding an angle measure of a triangle given two angles
Finding an angle measure for a triangle with an extended side
Finding an angle measure for a triangle sharing a side with another triangle
Pythagorean Theorem
Sine, cosine, and tangent ratios: Numbers for side lengths
Using the Pythagorean Theorem to find a sine, cosine, or tangent ratio in a right triangle
Using a trigonometric ratio to find a side length in a right triangle
Using a trigonometric ratio to find an angle measure in a right triangle
Solving a right triangle
Finding the magnitude and direction of a vector given its graph
Finding the components of a vector given its graph

- Finding the component of a vector along another vector
- Calculating gravitational potential energy
- Using conservation of energy with gravitational potential energy

Using conservation of energy with electrostatic potential energy
Understanding how electrostatic potential energy scales with charge and separation
Calculating the magnitude of an electrostatic force using Coulomb's Law

- Understanding that electrostatic forces add as vectors
- Understanding how electrostatic energy scales with charge and separation
- Calculating electrostatic energy using Coulomb's Law

- Sketching polarization induced by a nearby charge

- Measurement and Matter (28 topics)
- Multiplication of a decimal by a power of ten
- Division of a decimal by a power of ten
- Calculating positive powers of scientific notation
- Finding negative powers of scientific notation
- Interconverting compound SI units
- Interconverting derived SI units
- Interconverting whole degree temperatures in Celsius and kelvins
- Interconverting temperatures in Celsius and Fahrenheit
- One step dosage calculations
- Dosage calculations using patient weight
- Dosage rate calculations
- Distinguishing accuracy and precision
- Calculating absolute and relative error
- Naming components of the scientific method
- Setting up a unit conversion
- Deducing the unit missing from the solution to a basic quantitative problem
- Setting up the math for a one-step problem with unit conversion
- Setting up the math for a two-step quantitative problem
- Estimating the volume in liters of a spherical object
- Estimating the volume in liters of a cylindrical object
- Calculating volume by combining the volume of simple shapes
- Distinguishing mixtures from pure substances through physical properties
- Distinguishing physical and chemical properties by a macroscopic description
- Using the Law of Constant Composition
- Using the Law of Multiple Proportions
- Understanding periods and groups of the Periodic Table
- Using the Periodic Table to identify similar elements
- Distinguishing a metal from a nonmetal by physical properties
- Atoms, Ions and Molecules (7 topics)
- Counting the number of protons and electrons in a neutral atom
- Finding isoprotonic atoms
- Finding isotope mass or natural abundance from atomic mass
- Counting valence electrons in an atomic ion
- Drawing the Lewis dot diagram of a main group atom or common atomic ion
- Counting the electron shells in a neutral atom
- Predicting ionic compounds formed by two elements
- Chemical Reactions (20 topics)
- Using the Avogadro Number
- Calculating and using the molar mass of diatomic elements
- Calculating and using the molar mass of heterodiatomic compounds
- Finding mole ratios from chemical formulae
- Elemental analysis of binary compounds
- Finding a molecular formula from molar mass and elemental analysis of binary compounds
- Finding a molecular formula from molar mass and elemental analysis
- Combustion analysis
- Balancing chemical equations with noninterfering coefficients
- Using molarity to find solute moles and solution volume
- Calculating ion molarity using solute mass
- Predicting the products of dissolution
- Predicting precipitation
- Determining the molar mass of an acid by titration
- Standardizing a base solution by titration
- Identifying oxidized and reduced reactants in a metal-nonmetal reaction
- Identifying oxidized and reduced reactants in a single-displacement reaction
- Identifying combination, decomposition, single and double displacement reactions
- Predicting the products of a single displacement reaction involving hydrogen
- Predicting the products of a gas-evolving double displacement reaction
- Thermochemistry (6 topics)
- Calculating kinetic energy
- Interconverting calories and joules
- Calculating molar heat capacity
- Finding the equilibrium temperature when substances at different temperatures mix
- Calculating heat of reaction from bomb calorimetry data
- Calculating the heat of reaction from bond energies
- Electronic Structure and Chemical Bonding (50 topics)
- Understanding the meaning of a de Broglie wavelength
- Finding the minimum uncertainty in a position or velocity measurement

Interpreting the angular probability distribution of an orbital
Deducing the allowed quantum numbers of an atomic electron
Calculating the capacity of electron subshells
Knowing the subshells of an electron shell
Interpreting the electron configuration of a neutral atom
Interpreting the electron configuration of a neutral atom in noble-gas notation
Writing the electron configuration of a neutral atom with s and p electrons only
Interpreting the electron configuration of an atom or atomic ion
Identifying the electron added or removed to form an ion from an s or p block atom
Identifying the electron added or removed to form an ion
Predicting the relative ionization energy of elements
Interconverting the wavelength and frequency of electromagnetic radiation
Calculating the wavelength of a line in the spectrum of hydrogen
Counting bonding and nonbonding electron pairs in a Lewis structure
Counting electron pairs in a Lewis structure with double or triple bonds
Counting valence electrons in a molecule or polyatomic ion
Deciding whether a Lewis structure satisfies the octet rule
Writing Lewis structures for diatomic molecules
Predicting the single-bonded molecular compounds formed by two elements
Predicting the compound formed by two main group elements
Calculating formal charge
Writing Lewis structures for a molecule with one central atom and no octet-rule exceptions
Recognizing exceptions to the octet rule
Writing Lewis structures for an expanded valence shell central atom
Writing the Lewis structures for a molecule with resonance
Drawing Lewis structures for simple organic compounds
Predicting the relative electronegativities of atoms
Predicting bond polarity
Predicting relative bond polarity
Predicting the relative ionic character of chemical bonds
Predicting the relative length and energy of chemical bonds
Predicting the arrangement of electron groups around the central atom of a molecule
Identifying a molecule with one central atom from its 3D shape
Using the AXE notation to describe a molecule with a central atom
Naming the shape of molecules with one central atom and no octet-rule exceptions
Predicting bond angles in molecules with one central atom and no octet-rule exceptions
Predicting bond angles in a small organic molecule
Predicting and naming the shape of molecules with a central atom
Predicting deviations from ideal bond angles
Predicting whether molecules are polar or nonpolar
Naming common chemical groups
Identifying common chemical groups in a Lewis structure
Identifying hybridization in a small molecule
Counting sigma and pi bonds in a small molecule
Identifying carbon hybridization in simple organic molecules
Recognizing typical LCAO molecular orbitals
Drawing the MO energy diagram for a Period 2 homodiatom
Using the MO model to predict bond order and paramagnetism

- States of Matter (87 topics)

Interconverting pressure and force
Interconverting atmospheres and kilopascals
Interconverting atmospheres and torr
Understanding pressure equilibrium and atmospheric pressure
Understanding Boyle's Law
Solving applications of Boyle's Law
Using Charles's Law
Using the combined gas law
Using Avogadro's Law
Using the ideal equation of state
Interconverting molar mass and density of ideal gases
Calculating partial pressure of a gas from a sketch
Calculating mole fraction in a gas mixture
Calculating partial pressure in a gas mixture
Calculating the mass of a gas collected over water
Solving for a gaseous reactant
Understanding how average molecular kinetic energy scales with temperature
Understanding how average molecular speed scales with temperature and molar mass
Interpreting a graph of molecular speed distribution
Predicting how molecular speed distribution changes with temperature and molar mass
Calculating average molecular speed
Understanding how molecular collision rate scales with temperature and volume
Using relative effusion rates to find an unknown molar mass
Using thermodynamic state to order the ideality of gases

- Identifying the origin of nonideality in a gas
- Understanding the origin of the van der Waals equation of state
- Using the van der Waals equation of state
- Identifying a molecule from its electrostatic potential map
- Predicting the strength of intermolecular forces from an electrostatic potential map
- Identifying hydrogen-bonding interactions between molecules
- Identifying the intermolecular forces between atoms, ions and molecules
- Identifying the important intermolecular forces in pure compounds
- Predicting the relative strength of the dispersion force between molecules
- Predicting the relative boiling points of pure substances

Identifying important physical properties of liquids

- Understanding consequences of important physical properties of liquids
- Relating vapor pressure to vaporization

Understanding the connection between vapor pressure, boiling point, and enthalpy of vaporization
Calculating vapor pressure from boiling point and enthalpy of vaporization
Calculating enthalpy of vaporization from vapor pressure
Predicting the type of solid formed by a compound
Predicting the relative stability of ionic crystals from a sketch
Predicting the relative lattice energy of binary ionic compounds
Interpreting a Born-Haber cycle
Drawing the unit cell of a 2D lattice
Counting the atoms in a unit cell
Recognizing and naming close-packed crystal lattices
Recognizing and naming lattices with cubic unit cells
Calculating key distances in the fcc unit cell
Calculating key distances in the bcc unit cell
Finding an atomic radius from an fcc or bcc lattice constant
Finding density from an fcc or bcc lattice constant
Using heat of fusion or vaporization to find the heat needed to melt or boil a substance
Using a phase diagram to predict phase at a given temperature and pressure
Labeling a typical simple phase diagram
Using a phase diagram to find a phase transition temperature or pressure
Sketching a described thermodynamic change on a phase diagram
Identifying phase transitions on a heating curve
Interpreting a heating curve
Drawing a heating curve
Calculating mass percent composition
Using mass percent composition to find solution volume
Calculating volume percent composition
Finding mass or volume from percent concentration
Calculating ionic solution composition in equivalents
Solving applied equivalents composition problems
Calculating molality
Calculating mole fraction
Calculating mass concentration
Using mass concentration to find solute mass and solution volume
Solving applied mass concentration problems
Solving applied dilution problems
Applying like dissolves like
Calculating solubility
Using solubility to calculate solute mass or solution volume
Understanding how solubility varies with temperature and pressure
Understanding conceptual components of the enthalpy of solution
Using Henry's Law to calculate the solubility of a gas
Predicting the relative heat of hydration of ions
Predicting relative boiling point elevations and freezing point depressions
Using the Kf and Kb equations
Using the Kf and Kb equations with electrolytes
Calculating and using the van't Hoff factor for electrolytes
Using osmotic pressure to find molar mass
Using a solution freezing point to calculate a molar mass
Using Raoult's Law to calculate the vapor pressure of a component
Calculating ideal solution composition after a distillation

- Kinetics and Equilibrium (59 topics)

Predicting how reaction rate varies with pressure, concentration and temperature
Calculating the reaction rate of one reactant from that of another
Calculating average and instantaneous reaction rate from a graph of concentration versus time
Using a rate law
Using reactant reaction order to predict changes in initial rate
Deducing a rate law from initial reaction rate data
Calculating the change in concentration after a whole number of half-lives of a first-order reaction
Using a zero order integrated rate law to find concentration change
Using an integrated rate law for a first-order reaction

- Using a second-order integrated rate law to find concentration change
- Using first- and second-order integrated rate laws
- Deducing a rate law from the change in concentration over time

Finding half life and rate constant from a graph of concentration versus time
Solving applied problems with first-order kinetics
Interpreting a reaction energy diagram
Relating activation energy to reaction rate
Drawing the reaction energy diagram of a catalyzed reaction
Understanding the qualitative predictions of the Arrhenius equation
Using the Arrhenius equation to calculate k at one temperature from k at another
Using the Arrhenius equation to calculate Ea from k versus T data
Identifying the molecularity of an elementary reaction
Identifying intermediates in a reaction mechanism
Writing a plausible missing step for a simple reaction mechanism
Writing the rate law of an elementary reaction
Writing the rate law implied by a simple mechanism with an initial slow step
Expressing the concentration of an intermediate in terms of the concentration of reactants
Writing the rate law implied by a simple mechanism
Deducing information about reaction mechanisms from a reaction energy diagram
Understanding that no reaction goes to 100\% completion
Predicting relative forward and reverse rates of reaction in a dynamic equilibrium
Using Le Chatelier's Principle to predict the result of changing concentration
Using Le Chatelier's Principle to predict the result of changing temperature
Writing a concentration equilibrium constant expression
Writing a pressure equilibrium constant expression
Writing the concentration equilibrium expression for a heterogeneous equilibrium
Writing the pressure equilibrium expression for a heterogeneous equilibrium
Calculating an equilibrium constant from an equilibrium composition
Calculating an equilibrium constant from a heterogeneous equilibrium composition
Using an equilibrium constant to predict the direction of spontaneous reaction
Using the general properties of equilibrium constants
Interconverting Kp and Kc
Writing an equilibrium constant for a reaction sequence
Recognizing equilibrium from a sketch
Predicting equilibrium composition from a sketch
Setting up a reaction table
Calculating equilibrium composition from an equilibrium constant
Using the small x approximation to solve equilibrium problems
Calculating an equilibrium constant from a partial equilibrium composition
Calculating an equilibrium composition after a prior equilibrium determines K
Solving problems that mix equilibrium ideas with gas laws
Using the van't Hoff equation to predict K at a different temperature
Writing a solubility product (Ksp) expression
Using Ksp to calculate the solubility of a compound
Using the solubility of a compound to calculate Ksp
Calculating the solubility of an ionic compound when a common ion is present
Understanding the effect of pH on the solubility of ionic compounds
Writing a complex ion formation constant expression
Using Kf to calculate the equilibrium molarity of a complex
Calculating the solubility of an ionic compound when a complex may form

- Acids and Bases (43 topics)

Identifying acids and bases by their reaction with water
Understanding the difference between strong and weak acids
Identifying Bronsted-Lowry acids and bases
Identifying strong or weak acids and bases from a sketch
Finding the conjugate of an acid or base
Predicting acid or base strength from the conjugate
Predicting the products of the reaction of a strong acid with water
Predicting the reactants of a neutralization reaction
Predicting the qualitative acid-base properties of salts
Predicting the qualitative acid-base properties of metal cations
Identifying Lewis acids and bases in reactions
Predicting the acid-base properties of a binary oxide in water
Predicting the relative acidity of binary acids
Understanding the effect of induction on acidity
Interconverting pH and hydronium ion concentration
Interconverting pH and pOH at $25^{\circ} \mathrm{C}$
Interconverting hydronium and hydroxide concentration at $25^{\circ} \mathrm{C}$
Making qualitative estimates of pH change
Calculating the pH of a strong acid solution
Calculating the pH of a strong base solution
Diluting a strong acid solution to a given pH
Preparing a strong base solution with a given pH

- Writing an acid dissociation constant expression
- Determining the strength of acids from a sketch
- Calculating the Ka of a weak acid from pH
- Calculating the pH of a weak acid solution
- Writing a base protonation constant expression
- Calculating the pH of a weak base solution

Deriving K_{b} from K_{a}
Interconverting Ka and pKa
Calculating the pH of a salt solution
Calculating percent dissociation of a weak acid

- Understanding connections between descriptions of weak acid dissociation

Calculating the pH of a dilute acid solution
Writing the dissociation reactions of a polyprotic acid
Solving a polyprotic acid equilibrium composition problem
Calculating the pH of a weak acid titrated with a strong base
Calculating the pH of a weak base titrated with a strong acid

- Calculating the pH at equivalence of a titration

Identifying the major species in weak acid or weak base equilibria
Setting up a reaction table for a pH calculation with a common ion
Calculating the pH of a buffer

- Calculating the composition of a buffer of a given pH
- Entropy and Free Energy (19 topics)
- Calculating entropy change from reversible heat flow

Calculating absolute entropy using the Boltzmann hypothesis
Calculating entropy change using the Boltzmann hypothesis
Predicting qualitatively how entropy changes with temperature and volume
Predicting qualitatively how entropy changes with mixing and separation
Qualitatively predicting reaction entropy
Using the Second Law to predict spontaneous change
Calculating reaction entropy using the standard molar entropies of reactants
Using the general properties of Gibbs free energy
Calculating dG from dH and dS
Using the conditions of spontaneity to deduce the signs of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$
Calculating standard reaction free energy from standard free energies of formation
Estimating a phase transition temperature from standard thermodynamic data
Interconverting standard Gibbs free energy and K
Using thermodynamic data to calculate K
Recognizing consistency between statements about standard Gibbs free energy
Using the maximum work theorem with chemical work
Calculating reaction free energy under nonstandard conditions

- Using reaction free energy to predict equilibrium composition
- Electrochemistry (20 topics)

Writing a simple half-reaction from its description
Writing the half-reactions of a metal-nonmetal reaction
Writing the half-reactions of a single-displacement reaction
Writing and balancing complex half-reactions in acidic solution
Writing and balancing complex half-reactions in basic solution
Balancing a complex redox equation in acidic or basic solution
Writing the half-reactions of a complex redox reaction in acidic or basic solution
Designing a galvanic cell from a single-displacement redox reaction
Designing a galvanic cell from two half-reactions
Analyzing a galvanic cell
Picking a reduction or oxidation that will make a galvanic cell work
Ranking the strength of oxidizing and reducing agents using standard reduction potentials
Calculating standard reaction free energy from standard reduction potentials
Recognizing consistency among equilibrium constant, free energy, and cell potential
Using the Nernst equation to calculate nonstandard cell voltage
Understanding concentration cells
Using the relationship between charge, current and time
Using the Faraday constant
Analyzing the electrolysis of molten salt
Calculating the mass of an electrolysis product from the applied current

- Chemistry of the Elements (51 topics)

Understanding main-group periodic trends in ionization energy
Understanding main-group periodic trends in atomic radius
Understanding main-group periodic trends in metallicity
Predicting the most positive and negative oxidation states of main-group elements
Predicting the common oxidation states of main-group elements
Predicting the hydride formed by a main-group element
Predicting the oxide formed by a main-group element
Identifying a main-block group from its general properties

- Identifying a main-block group from an element oxide
- Identifying a main-block group from an element halide
- Predicting the type of bonding in a main-group element

Assessing the consistency of statements relating to main-group valence electron configuration

- Predicting the products of the reaction of a Group 1A or 2A metal with water

Predicting the products of the reaction of a Group 1A or 2A metal with oxygen
Predicting the products of the reaction of elements at either end of the Periodic Table
Identifying Group 3A elements
Identifying Group 4A elements
Identifying Group 5A elements
Identifying Group 6A elements
Understanding the chemical formulae of interhalogens
Understanding how halide bond length varies down a main-block group
Ordering the melting points of elements at either end of the Periodic Table
Ranking the oxidizing power of halogens
Writing the electron configuration of a first transition series atom
Interpreting an outer electron box diagram
Drawing the outer electron box diagram of a transition metal cation
Identifying transition metal cations with a given number of d electrons
Deducing the number of delectrons and unpaired spins in a transition metal cation
Understanding the exceptional electron configurations in the first transition series
Understanding words that describe where transition metals lie in the Periodic Table
Predicting the relative atomic radius of a transition metal atom
Predicting the relative density of a transition metal
Predicting the relative melting point of a transition metal
Predicting the highest common oxidation state of a metal in the first transition series
Predicting the reaction of a transition metal with a strong acid
Writing the formula of a metal complex from its description
Recognizing typical metal ligands
Determining the oxidation state of the metal in a complex ion
Naming complex cations with one type of ligand
Naming complex anions with one type of ligand
Naming complex ions
Determining the oxidation state of the metal in a coordination compound
Naming coordination compounds
Determining the coordination number of a metal in a complex
Understanding the connection between geometry and coordination number of a metal complex
Distinguishing isomers and alternate views of a metal complex
Drawing an isomer of a metal complex
Drawing cis and trans isomers of a metal complex
Adding electrons to a crystal field theory energy level diagram
Predicting color and magnetic properties from a crystal field theory energy level diagram
Drawing a crystal field theory energy level diagram

- Nuclear Chemistry (14 topics)

Interpreting the symbol for a nuclide
Writing the symbols in a nuclear chemical equation
Balancing a nuclear chemical equation
Writing the equation for a typical radioactive decay
Calculating the energy change in a nuclear reaction from the mass change
Knowing the properties of the common types of nuclear radiation
Understanding the common modes of radioactive decay
Understanding radioactive half life
Interconverting amount of radioactive decay and half life
Calculating radioactive activity from half life
Using isotope ratios to radiodate
Using activity to radiodate
Knowing units of radiation dosage and exposure
Identifying important types of nuclear medicine procedure

- Organic Chemistry (87 topics)

Identifying organic compounds
Identifying rigid parts of an acyclic organic molecule
Identifying hydrophobic and hydrophilic parts of an organic molecule
Interpreting condensed chemical structures
Interpreting condensed chemical structures with benzene rings
Interpreting the skeletal structure of a neutral organic molecule
Drawing a skeletal structure from a simple condensed structure
Drawing a skeletal structure from a condensed structure
Interpreting a skeletal structure with aromatic rings
Recognizing different skeletal structures
Understanding H atoms in a skeletal structure
Comparing skeletal structures related by one fewer bond
Using wedges and dashes in skeletal structures

- Naming normal alkanes
- Identifying the main chain of branched alkanes
- Naming the parent hydrocarbon of branched alkanes

Naming alkyl side chains
Identifying organic functional groups

- Using family suffixes to name organic compounds

Understanding the basic descriptive vocabulary of hydrocarbons
Understanding the basic descriptive vocabulary of molecules with functional groups
Numbering the main chain of branched alkanes
Naming and drawing small alkyl substituents
Naming and drawing alkyl and alkoxy substituents
Identifying constitutional isomers
Drawing the condensed structure of a constitutional isomer
Drawing the skeletal structure of a constitutional isomer
Identifying a chiral molecule from its condensed structure
Identifying chiral centers in a cyclic molecule
Drawing the mirror image of a simple organic molecule
Identifying the enantiomer of a simple organic molecule
Classifying organic reactions
Recognizing organic acids and bases
Deducing oxidation state from a Lewis structure
Identifying oxidation and reduction in organic reactions
Naming branched alkanes
Using multiplying affixes in the names of branched alkanes
Naming and drawing normal alkanes.
Naming and drawing simple cyclic alkanes
Naming and drawing branched alkanes
Naming and drawing simple substituted cycloalkanes
Naming unbranched alkenes and alkynes
Naming alkenes and alkynes
Naming and drawing linear alkenes with one double bond
Identifying cis/trans isomerism in a small condensed structure
Identifying cis/trans isomerism in a skeletal structure
Drawing the cis or trans isomer of a small alkene
Naming benzene derivatives
Predicting the reactants or products of alkene hydrogenation
Predicting the reactants or products of alkene hydration
Naming alkyl halides
Naming and drawing alkyl halides
Naming alcohols
Naming and drawing alcohols without alkyl side groups
Naming and drawing thiols without alkyl side groups
Naming and drawing alcohols
Identifying primary, secondary, and tertiary alcohols
Identifying common alcohols from a description
Predicting the products of symmetric alcohol dehydration
Predicting the reactants or products of alcohol oxidation
Understanding the common names of simple ethers
Understanding the common names of simple ketones
Naming and drawing ketones
Naming and drawing aldehydes
Predicting the reactants or products of alcohol and aldehyde oxidation
Predicting the reactants or products of carbonyl reduction
Identifying and drawing hemiacetals and acetals
Predicting the reactants or products of hemiacetal and acetal formation
Predicting the reactants or products of acetal hydrolysis
Understanding the common names of simple amines
Identifying primary, secondary, and tertiary amines
Naming and drawing primary amines without alkyl side groups
Naming and drawing secondary and tertiary amines
Naming aldehydes and acids
Naming and drawing carboxylic acids
Understanding the names of carboxylate salts
Naming and drawing unsubstituted esters
Identifying primary, secondary, and tertiary amides
Naming and drawing unsubstituted amides
Understanding common names of carboxylic acids and derivatives
Identifying positions labeled with Greek letters in acids and derivatives
Knowing the common names of small diacids
Predicting the reactants or products of esterification
Predicting the reactants or products of ester hydrolysis
Predicting the products of ester saponification
Predicting the reactants or products of amidation
Predicting the products of amide hydrolysis

- Biochemistry (70 topics)
- Understanding the descriptive vocabulary of monosaccharides
- Drawing the Fischer projection of the enantiomer of a monosaccharide
- Drawing the Haworth projection of an aldose from its Fischer projection
- Drawing the Haworth projection of a ketose from its Fischer projection
- Naming and drawing cyclic monosaccharides
- Identifying a given carbon in a cyclic monosaccharide
- Naming and drawing the products of aldose oxidation and reduction
- Identifying the parts of a disaccharide
- Knowing the names and properties of common sugars
- Identifying common polysaccharides
- Understanding the glycosidic links in common polysaccharides
- Understanding the basic descriptive vocabulary of fatty acids
- Understanding lipid number notation
- Understanding melting points trends of fatty acids
- Identifying the components of wax esters
- Identifying the parts of a triacylglycerol
- Identifying the parts of a glycerophospholipid
- Identifying the parts of a sphingomyelin
- Identifying molecules that could be in a cell membrane
- Recognizing the steroid nucleus
- Classifying lipids derived from fatty acids
- Matching structure and function of common lipids
- Predicting the products or reactants of triacylglycerol hydrogenation
- Predicting the products or reactants of triacylglycerol hydrolysis or saponification

Recognizing alpha amino acids

- Classifying amino acids
- Identifying the stereochemistry of natural amino acids
- Understanding the general acid-base properties of amino acids

Identifying and drawing peptide bonds
Describing peptides with 3-letter codes
Identifying specific interactions between residues in a protein
Predicting the location in a protein of a residue sequence
Naming an element of protein secondary structure from a description
Identifying changes at different levels of protein structure
Recognizing nucleotides
Numbering the carbons in nucleotides
Naming and drawing nucleosides
Naming and drawing nucleotides
Understanding the arrangement of hydrogen bonds in DNA base pairs
Understanding the structure of nucleic acid strands
Writing complementary DNA sequences
Understanding that DNA replication is semiconservative
Identifying the major types of RNA from a description
Understanding the relationship between DNA and mRNA base sequences
Using the genetic code
Classifying mutations
Predicting reactants or products of phosphorylation
Predicting the products of phosphoester or phosphoanhydride hydrolysis
Understanding major biochemical energy storage and release reactions
Identifying common redox coenzymes by their roles in a reaction
Understanding the formation and hydrolysis of acyl-CoA
Knowing basic facts about enzymes
Classifying enzymes
Identifying reactants and products from an enzyme name
Understanding basic models of competitive and noncompetitive inhibition
Predicting the effect of temperature or pH on enzyme activity
Understanding the biochemistry of digestion
Knowing inputs and outputs of the citric acid cycle
Understanding the general mechanism of oxidative phosphorylation
Solving citric acid cycle ATP stoichiometry problems
Knowing inputs and outputs of glycolysis
Completing a simplified diagram of glycolysis
Completing a simplified diagram of glucose catabolism
Solving carbohydrate catabolic stoichiometry problems
Knowing the steps of beta oxidation
Predicting the product of beta oxidation activation
Knowing inputs and outputs of beta oxidation
Solving fatty acid catabolic stoichiometry problems
Predicting the products of catabolic amino acid transamination
Completing a diagram of protein catabolism
*Other Topics Available By default, these topics are NOT included in the course, but can be added using the content editor in the Teacher Module.

