ALEKS - Assessment and Learning

Artificial Intelligence

What Makes ALEKS Unique

ALEKS is a web-based learning and assessment system that has been successfully used by millions of students in the U.S. and abroad, from the third grade through higher education covering more than fifty subjects. It was developed over several decades by researchers at New York University and The University of California, Irvine (UCI), and is derived from Knowledge Space Theory ("KST"). 1  All content in ALEKS is created by experts with advanced degrees, thorough knowledge of their respective fields of study, and extensive experience in education and teaching. ALEKS is based on active learning.

The most important feature of ALEKS is that it uses artificial intelligence (AI) to map the details of each student’s knowledge. ALEKS "knows," at each moment, with respect to each individual topic, whether each individual student has mastered that topic. If not, ALEKS knows whether she is ready to learn the topic at that moment. ALEKS uses this knowledge to make learning more efficient and effective by continuously offering the student a selection of only the topics she is ready to learn at the current time. This builds student confidence and learning momentum.

The vast majority of ALEKS problems are "open-ended" (rather than multiple-choice) questions requiring the student to provide authentic input appropriate to the discipline. For example, students may be required to input their final answer as a mathematical expression, chemical equation, histogram, step-by-step math proof, graph of a function, an accounting entry, or a geometrical construction using a virtual pencil, ruler and compass.

ALEKS has sophisticated answer processing, enabling real-time machine evaluation of student answers, including immediate feedback where desirable. As a result of these features, the inferences that ALEKS draws from student responses are far more reliable than those achieved using a multiple-choice format. For example, when confronted with open-ended questions in ALEKS, students must actually solve the problem; they cannot merely try out different proposed solutions. In ALEKS, the lucky guesses common with multiple-choice questioning are virtually non-existent. Students are required to solve open-ended problems, instead of reading, watching other people solve problems, or using the various and sundry possible techniques for answering multiple-choice questions.

ALEKS updates its comprehensive delineation of the student’s knowledge after each new topic is learned by the student so ALEKS AI is always 100% current. ALEKS continuously collects and analyzes an immense amount and variety of statistical data during student assessment and learning. Over the last 20 years, this massive database has been used to continually improve and upgrade the ALEKS AI and subject-specific content.

1 Learning Space Theory is set forth authoritatively in Learning Spaces by Jean-Claude Falmagne and Jean-Paul Doignon (Springer-Verlag, 2011). This monograph is a revision and expansion of Knowledge Spaces (Springer-Verlag, 1999) and includes an examination of the mathematical basis for learning space theory and its applicability to various practical systems of knowledge assessment (such as ALEKS). The mathematical areas used in LST are primarily Combinatorics, Probability, and Stochastic Processes.